Abstract:
Heteroleptic carbene complexes and the use thereof in organic electronics The present invention relates to heteroleptic complexes comprising a phenylimidazole or phenyltriazole unit bonded via a carbene bond to a central metal atom, and phenylimidazole ligands attached via a nitrogen-metal bond to the central atom, to OLEDs which comprise such heteroleptic complexes, to light-emitting layers comprising at least one such heteroleptic complex, to a device selected from the group consisting of illuminating elements, stationary visual display units and mobile visual display units comprising such an OLED, to the use of such a heteroleptic complex in OLEDs, for example as emitter, matrix material, charge transport material and/or charge blocker.
Abstract:
The present invention relates to heteroleptic complexes comprising a phenylimidazole or phenyltriazole unit bonded via a carbene bond to a central metal atom, and phenylimidazole ligands attached via a nitrogen-metal bond to the central atom, to OLEDs which comprise such heteroleptic complexes, to light-emitting layers comprising at least one such heteroleptic complex, to a device selected from the group consisting of illuminating elements, stationary visual display units and mobile visual display units comprising such an OLED, to the use of such a heteroleptic complex in OLEDs, for example as emitter, matrix material, charge transport material and/or charge blocker.
Abstract:
The present invention relates to heteroleptic complexes comprising a phenylimidazole or phenyltriazole unit bonded via a carbene bond to a central metal atom, and phenylimidazole ligands attached via a nitrogen-metal bond to the central atom, to OLEDs which comprise such heteroleptic complexes, to light-emitting layers comprising at least one such heteroleptic complex, to a device selected from the group consisting of illuminating elements, stationary visual display units and mobile visual display units comprising such an OLED, to the use of such a heteroleptic complex in OLEDs, for example as emitter, matrix material, charge transport material and/or charge blocker.
Abstract:
Organometallic complexes which bear at least one ligand which has a unit having a triplet energy of at least 22 000 cm−1, a process for preparing the organometallic complexes, a mixture comprising at least one inventive organometallic complex, the use of the organometallic complexes or of the mixture in organic light-emitting diodes, the organometallic complexes preferably being used as emitter materials, and specific nitrogen- or phosphorus-substituted triphenylene derivatives and a process for their preparation.