摘要:
The present invention relates to a process for treating an output from a hydrocarbon conversion, wherein the hydrocarbon conversion is performed in the presence of an acidic ionic liquid. The hydrocarbon conversion is preferably an isomerization. First of all, the hydrogen halide is drawn off in an apparatus from a mixture which originates from the hydrocarbon conversion and comprises at least one hydrocarbon and at least one hydrogen halide, and then the mixture depleted of hydrogen halide is subjected to a wash.
摘要:
A process for preparing an aluminum-free boron containing zeolitic material comprising the framework structure MWW (BMWW), comprising (a) hydrothermally synthesizing the BMWW from a synthesis mixture containing water, a silicon source, a boron source, and an MWW template compound obtaining the BMWW in its mother liquor, the mother liquor having a pH above 9; (b) adjusting the pH of the mother liquor, obtained in (a) and containing the BMWW, to a value in the range of from 6 to 9; (c) separating the BMWW from the pH-adjusted mother liquor obtained in (b) by filtration in a filtration device.
摘要:
The present invention relates to a process for preparing cyclohexane from benzene and/or methylcyclopentane (MCP) by hydrogenation or isomerization. Prior to the cyclohexane preparation, the dimethylpentanes (DMP) are removed in a distillation apparatus (D1) from a hydrocarbon mixture (HM1) comprising not only benzene and/or MCP but also DMP. If cyclohexane is already present in the hydrocarbon mixture (HM1), this cyclohexane is first removed together with DMP from benzene and/or MCP. This cyclohexane already present can be separated again from DMP in a downstream distillation step and recycled into the process for cyclohexane preparation.
摘要:
A process for preparing an aluminum-free boron containing zeolitic material comprising the framework structure MWW (BMWW), comprising (a) hydrothermally synthesizing the BMWW from a synthesis mixture containing water, a silicon source, a boron source, and an MWW template compound obtaining the BMWW in its mother liquor, the mother liquor having a pH above 9; (b) adjusting the pH of the mother liquor, obtained in (a) and containing the BMWW, to a value in the range of from 6 to 9; (c) separating the BMWW from the pH-adjusted mother liquor obtained in (b) by filtration in a filtration device.
摘要:
The present invention relates to a process for preparing cyclohexane from methylcyclopentane (MCP) and benzene. In the context of the present invention, MCP and benzene are constituents of a hydrocarbon mixture (HM1) additionally comprising dimethylpentanes (DMP), possibly cyclohexane and possibly at least one compound (low boiler) selected from acyclic C5-C6-alkanes and cyclopentane. First of all, benzene is converted in a hydrogenation step to cyclohexane (that present in the hydrocarbon mixture (HM2)), while MCP is isomerized in the presence of a catalyst, preferably of an acidic ionic liquid, to cyclohexane. After the hydrogenation but prior to the isomerization the dimethylpentanes (DMP) are removed, with initial removal of the cyclohexane present in the hydrocarbon mixture (HM2) together with DMP. This cyclohexane already present prior to the isomerization can be separated again from DMP in a downstream rectification step and isolated and/or recycled into the process for cyclohexane preparation. Between the DMP removal and MCP isomerization—if low boilers are present in the hydrocarbon mixture (HM1)—low boilers are, optionally removed. After the isomerization, the cyclohexane is isolated, optionally with return of unisomerized MCP and optionally of low boilers. Preferably, cyclohexane and/or low boilers are present in the hydrocarbon mixture (HM1), and so a low boiler removal is preferably conducted between the DMP removal from isomerization. It is additionally preferable that the removal of the cyclohexane from DMP is additionally conducted, meaning that the cyclohexane component which arises in the benzene hydrogenation and may be present in the starting mixture (HM1) is isolated and hence recovered.