Abstract:
A method and device for encoding a plurality of image frames uses two separate encoders, where each image frame is divided into two portions to each be encoded by one of the two encoders, where a boundary between the two portions is offset between the image frames according to a size of a search window of one of the encoders. Consequently, copying of pixel data for the purpose of motion search is only required in one direction between a first and a second encoder.
Abstract:
A method decodes video data based on gaze sensing. The method may decode an encoded video stream received from an encoder associated with a camera, and present the decoded video stream on a display of a device. The method may further detect a gaze point of an operator viewing the display, designate locations associated with the decoded video stream, based upon the gaze point, as skip block insertion points. The method may send the locations to the encoder, wherein the encoder reduces an update rate of inter-frame coded blocks corresponding to the skip block insertion points when encoding video data produced by the camera. An apparatus can implement the method to decode video data based on gaze sensing.
Abstract:
A method and system for monitoring video data based on gaze is disclosed. The method may include receiving a video stream generated by a camera and presenting the received video stream on a display. The method may further include receiving a notification signal triggered by an event and determining that the video stream is associated with the notification signal. The method may further include detecting a gaze point of an operator viewing the display and determining at least one parameter associated with the gaze point. The method may include controlling a state of an alarm associated with the notification signal based upon the at least one parameter associated with the gaze point.
Abstract:
A method and device for encoding a plurality of image frames uses two separate encoders, where each image frame is divided into two portions to each be encoded by one of the two encoders, where the image frame is divided to minimize motion across the boundary between the two portions, such that the two encoders may operate independently of each other without a substantial bit rate penalty or reduced encoding quality.
Abstract:
The present invention relates generally to video communication systems, and more specifically to a method and device for adjusting properties of a graphical overlay for a video stream, the adjusted properties being at least one of a position, a degree of animation and a color composition of the graphical overlay and the adjustment is based on a scene depicted by the time period of the video stream. The adjustment is performed if an estimated bitrate for transmitting an encoded bitstream comprising the time period of the video stream and the graphical overlay exceeds a predetermined upper threshold bitrate for transmitting an encoded single bitstream comprising the time period of the video stream and the graphical overlay.
Abstract:
A method for correcting and presenting a barrel distorted image is disclosed. In the method an output image is created having a user-defined aspect ratio (AR), and the method comprises acquiring a continuous flow of barrel distorted images in a video camera and processing the image in an image processing unit. The processed image is added as an output image to an image stream, and the actual processing includes applying a barrel distortion correction so as to form a corrected image having a smallest width (w′) and a smallest height (h′), and generating the output image by cropping the corrected image to a height exceeding or equaling the smallest height (h′) and having the user-defined aspect ratio (AR).
Abstract:
A method and mobile unit facilitate installation of a surveillance camera for monitoring an object of interest in a scene. The surveillance camera acquires a zoomed out image of the scene. The zoomed out image is displayed in a display wherein the zoomed out image has a zoomed out center point. An indicator overlaid on the displayed zoomed out image is displayed in the display, wherein the indicator and the zoomed out center point are displaced in relation to each other by a deviation. The indicator indicates the position of a zoomed in center point of a zoomed in image of the scene. The surveillance camera is directed so that the position of the object of interest and the indicator coincide so that the object of interest is included in a zoomed in image of the scene.
Abstract:
A method and device for encoding a plurality of image frames uses two separate encoders, where each image frame is divided into two portions to each be encoded by one of the two encoders, where a boundary between the two portions is offset between the image frames according to a size of a search window of one of the encoders. Consequently, copying of pixel data for the purpose of motion search is only required in one direction between a first and a second encoder.
Abstract:
A method decodes video data based on gaze sensing. The method may decode an encoded video stream received from an encoder associated with a camera, and present the decoded video stream on a display of a device. The method may further detect a gaze point of an operator viewing the display, designate locations associated with the decoded video stream, based upon the gaze point, as skip block insertion points. The method may send the locations to the encoder, wherein the encoder reduces an update rate of inter-frame coded blocks corresponding to the skip block insertion points when encoding video data produced by the camera. An apparatus can implement the method to decode video data based on gaze sensing.
Abstract:
A method and a video management system is disclosed. The method may include receiving a video stream from a camera and displaying the video stream on a display. The method may include obtaining, via an eye tracking sensor, gaze information for an operator watching the display. The method may include generating a historical gaze heat map for the video stream for a time period based on the obtained gaze information and determining a low interest area for the video stream based on the generated historical gaze heat map. The method may include instructing the camera to decrease a bit rate of the video stream in the low interest area.