Abstract:
A circuit of a node in a radio network and method for transit time measurement between a first node and a second node of a radio network is provided. A frame is transmitted by the first node, wherein the frame requires an acknowledgment of reception by the second node. A first point in time of the transmission of the frame is established by the first node by a time counter. The frame is received by the second node at a second point in time. The acknowledgment is transmitted by the second node to the first node at a third point in time, wherein the third point in time depends on the second point in time by a predetermined time interval between the second point in time and the third point in time. A fourth point in time is established by the first node by the time counter when the acknowledgment is received. The transit time or the change in transit time is determined from the first point in time established by the time counter and from the established fourth point in time and from the predetermined time interval.
Abstract:
In certain embodiments, a method includes transmitting, by a first node, a first signal with a first frequency. The method includes receiving a second signal with a second frequency by downmixing the second signal to an intermediate frequency. The method includes determining a first value of a first phase for the second frequency. The method includes transmitting a third signal with a third frequency, the first frequency and the third frequency having a frequency difference, and receiving a fourth signal with a fourth frequency, the second frequency and the fourth frequency having the frequency difference. The method includes determining a second value of the first phase for the fourth frequency. The first frequency and the second frequency are spaced apart by an amount of the intermediate frequency, and the third frequency and the fourth frequency are spaced apart by the amount of the intermediate frequency.
Abstract:
In certain embodiments, a method includes transmitting, by a first node, a first signal with a first frequency. The method includes receiving a second signal with a second frequency by downmixing the second signal to an intermediate frequency. The method includes determining a first value of a first phase for the second frequency. The method includes transmitting a third signal with a third frequency, the first frequency and the third frequency having a frequency difference, and receiving a fourth signal with a fourth frequency, the second frequency and the fourth frequency having the frequency difference. The method includes determining a second value of the first phase for the fourth frequency. The first frequency and the second frequency are spaced apart by an amount of the intermediate frequency, and the third frequency and the fourth frequency are spaced apart by the amount of the intermediate frequency.
Abstract:
In an embodiment, a circuit includes a synchronizer configured to generate a trigger signal synchronized to a reference clock. A synthesizer is configured to synthesize a signal according to frequency control data in response to the trigger signal. A radio receiver is configured to process a carrier signal according to the synthesized signal. A phase measurement unit is configured to measure a first channel frequency response based on the processed carrier signal.
Abstract:
A circuit of a node in a radio network and method for transit time measurement between a first node and a second node of a radio network is provided. A frame is transmitted by the first node, wherein the frame requires an acknowledgment of reception by the second node. A first point in time of the transmission of the frame is established by the first node by a time counter. The frame is received by the second node at a second point in time. The acknowledgment is transmitted by the second node to the first node at a third point in time, wherein the third point in time depends on the second point in time by a predetermined time interval between the second point in time and the third point in time. A fourth point in time is established by the first node by the time counter when the acknowledgment is received. The transit time or the change in transit time is determined from the first point in time established by the time counter and from the established fourth point in time and from the predetermined time interval.
Abstract:
In certain embodiments, a method includes transmitting, by a first node, a first signal with a first frequency. The method includes receiving a second signal with a second frequency by downmixing the second signal to an intermediate frequency. The method includes determining a first value of a first phase for the second frequency. The method includes transmitting a third signal with a third frequency, the first frequency and the third frequency having a frequency difference, and receiving a fourth signal with a fourth frequency, the second frequency and the fourth frequency having the frequency difference. The method includes determining a second value of the first phase for the fourth frequency. The first frequency and the second frequency are spaced apart by an amount of the intermediate frequency, and the third frequency and the fourth frequency are spaced apart by the amount of the intermediate frequency.
Abstract:
A first node of a radio network initiates a mode for finding the range to a second node. The first node transmits to the second node, with the address of the second node, a range finding command, which switches the second node into the range finding mode and controls a sequence. The first node transmits in a transmission time window a first signal, which is received by the second node in an associated reception time window, a first phase value of the first signal being measured. The second node transmits in a transmission time window a second signal, which is received by the first node in an associated reception time window, a second phase value of the second signal being measured. The first frequency is changed by a frequency difference and the second frequency is changed by the frequency difference in a subsequent time window of the sequence.
Abstract:
In one embodiment, a method includes receiving a radio frequency (RF) signal; synchronizing the received RF signal with a preamble to determine a time base; determining a first energy value of the received RF signal by averaging received signal strength indication (RSSI) values of the received RF signal over a first period of time; determining a second energy value of the received RF signal over a second period of time; determining a difference value between the first energy value and the second energy value; comparing the difference value with a predetermined energy threshold value; determining a quality value of the received RF signal; comparing the quality value of the received RF signal with a predetermined quality threshold value; and, if the difference value exceeds the predetermined energy threshold value or the quality value is below the predetermined quality threshold value, then erasing the time base.
Abstract:
A transmitter-receiver circuit and a method for distance measurement between a first node and a second node of a radio network is provided, wherein a mode of the first node and a mode of the second node are switched from a normal mode for communication in the radio network to a mode for distance measurement, wherein, in the mode for distance measurement for a transit time measurement, a radio signal is transmitted by the first node and received by the second node and a radio signal is transmitted by the second node and received by the first node and a first distance value is determined by measuring the transit time of the radio signals. In the mode for distance measurement, for a phase measurement an unmodulated carrier signal is transmitted as a radio signal by the first node and received by the second node and an unmodulated carrier signal is transmitted as a radio signal by the second node and received by the first node and a second distance value is determined by measurement and calculation from four values of the phases for different frequencies of the radio signals. Whereby, the distance between the first node and the second node is calculated from the first distance value of the transit time measurement and the second distance value of the phase measurement.
Abstract:
A transmitter-receiver circuit and a method for distance measurement between a first node and a second node of a radio network is provided, wherein a mode of the first node and a mode of the second node are switched from a normal mode for communication in the radio network to a mode for distance measurement, wherein, in the mode for distance measurement for a transit time measurement, a radio signal is transmitted by the first node and received by the second node and a radio signal is transmitted by the second node and received by the first node and a first distance value is determined by measuring the transit time of the radio signals. In the mode for distance measurement, for a phase measurement an unmodulated carrier signal is transmitted as a radio signal by the first node and received by the second node and an unmodulated carrier signal is transmitted as a radio signal by the second node and received by the first node and a second distance value is determined by measurement and calculation from four values of the phases for different frequencies of the radio signals. Whereby, the distance between the first node and the second node is calculated from the first distance value of the transit time measurement and the second distance value of the phase measurement.