Abstract:
A method for cleaning one or more interior surfaces of a processing chamber includes removing a processed substrate from the processing chamber, and introducing a first cleaning chemistry into the processing chamber to generate a first internal pressure of greater than 1.1 atm within the processing chamber and remove deposited contaminants from the one or more interior surfaces of the processing chamber. The method further comprises removing the cleaning chemistry from the processing chamber.
Abstract:
Exemplary substrate processing systems may include a factory interface and a load lock coupled with the factory interface. The systems may include a transfer chamber coupled with the load lock. The transfer chamber may include a robot configured to retrieve substrates from the load lock. The systems may include a chamber system positioned adjacent and coupled with the transfer chamber. The chamber system may include a transfer region laterally accessible to the robot. The transfer region may include a plurality of substrate supports disposed about the transfer region. Each substrate support of the plurality of substrate supports may be vertically translatable. The transfer region may also include a transfer apparatus rotatable about a central axis and configured to engage substrates and transfer substrates among the plurality of substrate supports. The chamber system may also include a plurality of processing regions vertically offset and axially aligned with an associated substrate support.
Abstract:
A substrate processing apparatus is provided. The substrate processing apparatus includes a vacuum chamber having a dome and a floor. A substrate support is disposed inside the vacuum chamber. A plurality of thermal lamps are arranged in a lamphead and positioned proximate the floor of the vacuum chamber. A reflector is disposed proximate the dome, where the reflector and the dome together define a thermal control space. The substrate processing apparatus further includes a plurality of power supplies coupled to the thermal lamps and a controller for adjusting the power supplies to control a temperature in the vacuum chamber.
Abstract:
Exemplary substrate processing systems may include a factory interface and a load lock coupled with the factory interface. The systems may include a transfer chamber coupled with the load lock. The transfer chamber may include a robot configured to retrieve substrates from the load lock. The systems may include a chamber system positioned adjacent and coupled with the transfer chamber. The chamber system may include a transfer region laterally accessible to the robot. The transfer region may include a plurality of substrate supports disposed about the transfer region. Each substrate support of the plurality of substrate supports may be vertically translatable. The transfer region may also include a transfer apparatus rotatable about a central axis and configured to engage substrates and transfer substrates among the plurality of substrate supports. The chamber system may also include a plurality of processing regions vertically offset and axially aligned with an associated substrate support.
Abstract:
The present disclosure generally relates to gas inject apparatus for a process chamber for processing of semiconductor substrates. The gas inject apparatus include one or more gas injectors which are configured to be coupled to the process chamber. Each of the gas injectors are configured to receive a process gas and distribute the process gas across one or more gas outlets. The gas injectors include a plurality of pathways, a fin array, and a baffle array. The gas injectors are individually heated. A gas mixture assembly is also utilized to control the concentration of process gases flown into a process volume from each of the gas injectors. The gas mixture assembly enables the concentration as well as the flow rate of the process gases to be controlled.
Abstract:
Embodiments described herein include processes and apparatuses relate to epitaxial deposition. A method for epitaxially depositing a material is provided and includes positioning a substrate on a substrate support surface of a susceptor within a process volume of a chamber body, where the process volume contains upper and lower chamber regions. The method includes flowing a process gas containing one or more chemical precursors from an upper gas inlet on a first side of the chamber body, across the substrate, and to an upper gas outlet on a second side of the chamber body, flowing a purge gas from a lower gas inlet on the first side of the chamber body, across the lower surface of the susceptor, and to a lower gas outlet on the second side of the chamber body, and maintaining a pressure of the lower chamber region greater than a pressure of the upper chamber region.
Abstract:
The present disclosure generally relates to a process chamber for processing of semiconductor substrates. The process chamber includes an upper lamp assembly, a lower lamp assembly, a susceptor, an upper window disposed between the substrate support and the upper lamp assembly, a lower window disposed between the lower lamp assembly and the substrate support, an inject ring, and a base ring. The susceptor includes a movement assembly. The movement assembly includes a bearing feedthrough assembly. The bearing feedthrough assembly is a ferrofluidic feedthrough assembly and functions as a ferrofluidic bearing. The bearing feedthrough assembly includes a shaft coupled to the support shaft. The shaft is rotated within the bearing feedthrough assembly. The bearing feedthrough assembly is combined with a first linear spline and a second linear spline.
Abstract:
A method and apparatus for processing a semiconductor substrate is described. The apparatus is a process chamber having an optically transparent upper dome and lower dome. Vacuum is maintained in the process chamber during processing. The upper dome is thermally controlled by flowing a thermal control fluid along the upper dome outside the processing region. Thermal lamps are positioned proximate the lower dome, and thermal sensors are disposed among the lamps. The lamps are powered in zones, and a controller adjusts power to the lamp zones based on data received from the thermal sensors.
Abstract:
Embodiments disclosed herein generally relate to methods and apparatus for processing of the bottom surface of a substrate to counteract thermal stresses thereon. Correcting strains are applied to the bottom surface of the substrate which compensate for undesirable strains and distortions on the top surface of the substrate. Specifically designed films may be formed on the back side of the substrate by any combination of deposition, implant, thermal treatment, and etching to create strains that compensate for unwanted distortions of the substrate. In some embodiments, localized strains may be introduced by locally altering the hydrogen content of a silicon nitride film or a carbon film, among other techniques. Structures may be formed by printing, lithography, or self-assembly techniques. Treatment of the layers of film is determined by the stress map desired and includes annealing, implanting, melting, or other thermal treatments.
Abstract:
Embodiments of the present disclosure relate to reducing dislocation density in a heteroepitaxial growth film and devices including heteroepitaxial films with reduced dislocation density. According to embodiments of the present disclosure, sidewalls of high aspect ratio trenches may be tilted or angled to allow defects in crystalline material formed in the high aspect ratio trenches to be terminated in the tilted sidewalls, including defects propagating along the length of the high aspect ratio trenches. Embodiments of the present disclosure may be used to reduce defects in heteroepitaxial growth on silicon (Si) for microelectronic applications, such as high mobility channels using Group III-V elements in field effect transistors.