Abstract:
Methods and apparatus for processing a substrate are provided herein. In some embodiments, a process chamber includes: a chamber body and a lid assembly defining a processing volume within the process chamber; a substrate support disposed within the processing volume to support a substrate; and a showerhead having a first surface including a plurality of gas distribution holes disposed opposite and parallel to the substrate support, wherein the showerhead is fabricated from aluminum and includes an aluminum oxide coating along the first surface, wherein the aluminum oxide coating has a thickness of about 0.0001 to about 0.002 inches. In some embodiments, the showerhead may further have at least one of a roughness of about 10 to about 300μ-in Ra, or an emissivity (ε) of about 0.20 to about 0.80. The process chamber may be a thermal atomic layer deposition (ALD) chamber.
Abstract:
Methods for reducing contact resistance include performing a selective titanium silicide (TiSi) deposition process on a middle of the line (MOL) contact structure that includes a cavity in a substrate of dielectric material. The contact structure also includes a silicon-based connection portion at a bottom of the cavity. The selective TiSi deposition process is selective to silicon-based material over dielectric material. The methods also include performing a selective deposition process of a metal material on the MOL contact structure. The selective deposition process is selective to TiSi material over dielectric material and forms a silicide capping layer on the silicon-based connection portion. The methods further include performing a seed layer deposition process of the metal material on the contact structure.
Abstract:
Semiconductor devices incorporating multi-threshold voltage structures and methods of forming such semiconductor devices are provided herein. In some embodiments of the present disclosure, a semiconductor device having a multi-threshold voltage structure includes: a substrate; a gate dielectric layer atop the substrate, wherein the gate dielectric layer comprises an interface layer and a high-k dielectric layer atop the interface layer; a lanthanum nitride layer deposited atop the high-k dielectric layer; an interface of the interface layer and the high-k dielectric layer comprising lanthanum species from the lanthanum nitride layer; and a gate electrode layer atop the lanthanum nitride layer.