Abstract:
A method of depositing a low refractive index coating on a photo-active feature on a substrate comprises forming a substrate having one or more photo-active features thereon and placing the substrate in a process zone. A deposition gas is energized in a remote gas energizer, the deposition gas comprising a fluorocarbon gas and an additive gas. The remotely energized deposition gas is flowed into the process zone to deposit a low refractive index coating on the substrate.
Abstract:
Embodiments described herein relate to methods of seam-free gapfilling and seam healing that can be carried out using a chamber operable to maintain a supra-atmospheric pressure (e.g., a pressure greater than atmospheric pressure). One embodiment includes positioning a substrate having one or more features formed in a surface of the substrate in a process chamber and exposing the one or more features of the substrate to at least one precursor at a pressure of about 1 bar or greater. Another embodiment includes positioning a substrate having one or more features formed in a surface of the substrate in a process chamber. Each of the one or more features has seams of a material. The seams of the material are exposed to at least one precursor at a pressure of about 1 bar or greater.
Abstract:
A method of forming a memory device including a plurality of nonvolatile memory cells is provided. The method includes forming a hole in a stack of alternating insulator layers and memory cell layers. The stack extends from a bottom to a top, and the stack includes a plurality of insulator layers and plurality of memory cell layers. The method further includes depositing a first portion of a silicon channel layer. The first portion of the silicon channel layer extends from the bottom of the stack to the top of the stack. The method further includes adding a dopant layer over the first portion of the silicon channel layer. The dopant layer includes a first dopant. The method further includes depositing a second portion of the silicon channel layer. The second portion of the silicon channel layer extends from the bottom of the stack to the top of the stack.