Abstract:
An interface circuit in an electronic device may contend for access to a shared communication channel on behalf of the electronic device and a recipient electronic device, where the access has a duration. Then, the electronic device may provide a schedule frame intended for the recipient electronic device that includes information that specifies one or more time slots during the duration that are associated with the recipient electronic device and one or more communication functions of the recipient electronic device in the one or more time slots. Moreover, the electronic device may provide a data frame with data intended for the recipient electronic device. In response, the electronic device may receive a response frame associated with the recipient electronic device, where the response frame is received during at least one of the one or more time slots.
Abstract:
Methods and apparatus for an electronic device to perform a dynamic frequency selection (DFS) proxy function are described. An interface circuit of the electronic device receives, from an access point associated with the electronic device, a frame with DFS information that indicates a presence of interference associated with a higher priority user in a shared band of radio frequencies. The frame can include an action frame with a channel switch announcement (CSA) or a beacon with a CSA. In response to receiving the DFS information, the electronic device forwards, to a third electronic device, the DFS information, where the third electronic device is not associated with and does not have a connection to the access point. In this way, the electronic device functions as a DFS proxy for the third electronic device with respect to the shared band of radio frequencies used by the access point.
Abstract:
In some embodiments, one or more wireless stations operate to configure direct communication with neighboring mobile stations, e.g., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to adapting a signal strength metric threshold. In some embodiments, the signal strength metric may be adapted (or adjusted) to establish or maintain data communications with peer devices.
Abstract:
In one set of embodiments, one or more client stations operate to configure Neighbor Awareness Networking (NAN)—direct communication with neighboring client stations, i.e., direct communication between the client stations without utilizing an intermediate access point. Embodiments of the disclosure relate to NAN datapath scheduling and NAN pre-datapath operation setup and scheduling. The NAN datapath embodiments described herein provide a mechanism through which devices can communicate and provide services. Aspects of the datapath development include datapath scheduling, including datapath setup and scheduling attributes, as well as pre-datapath operation triggering and scheduling. Scheduling may include determination of a type of datapath, including paging and synchronized datapaths. NAN data cluster base schedules may be scheduled as equal-sets or subsets of datapath schedules. The datapath model may be implemented for unicast and multicast communication between client stations.
Abstract:
In some embodiments, one or more wireless stations operate to configure direct communication with neighboring mobile stations, e.g., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to techniques for devices (e.g., NAN devices and/or AWDL devices) to detect asymmetric awareness amongst peers.
Abstract:
One or more wireless stations may operate to configure Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations, e.g., without utilizing an intermediate access point. Scheduling of NAN ranging procedures may include a first wireless station sending first information, including first scheduling preferences and a first ranging role, to a second wireless station. The first wireless station receives second information, including second scheduling preferences and a second ranging role, from the second wireless station. The first wireless station may initiate the ranging procedure based on the scheduling preferences and ranging parameters. Alternatively, the second wireless station and may initiate the ranging procedure based on the scheduling preferences and ranging parameters.
Abstract:
In some embodiments, one or more wireless stations operate to configure Neighbor Awareness Networking (NAN)—direct communication between neighboring wireless stations, e.g., without utilizing an intermediate access point. Embodiments of the disclosure relate to NAN datapath configuration. The NAN datapath embodiments described herein provide a mechanism through which devices can communicate and provide services. Aspects of the datapath development include datapath scheduling, including datapath setup and scheduling attributes, scheduler rank management, and further NAN discovery. The datapath model may be implemented for unicast and multicast communication between wireless stations.
Abstract:
In some embodiments, one or more wireless stations operate according to Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations, e.g., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to NAN datapath scheduling and NAN pre-datapath operation setup and scheduling. The NAN datapath embodiments described herein provide a mechanism through which devices can communicate and provide services. Aspects of the datapath development include datapath scheduling, including datapath setup and scheduling attributes, as well as pre-datapath operation triggering and scheduling. Scheduling attributes may include a native scheduler rank and a NAN data cluster scheduler rank. NAN data cluster base schedules may be scheduled as equal-sets or subsets of datapath schedules. The datapath model may be implemented for unicast and multicast communication between wireless stations, including mobile stations.
Abstract:
In some embodiments, one or more wireless stations operate to configure Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to aspects of NAN communication, including service discovery proxy registration, publishing, and subscription of services via the proxy, maintenance of the proxy, and de-registration of the proxy.
Abstract:
An electronic device that communicates with a second electronic device is described. During operation, an electronic device communicates first messages with the second electronic device in time slots corresponding to first channels in a first band of frequencies using a peer-to-peer communication protocol (such as neighbor awareness networking or NaN), where, in a given time slot, a given first channel in the first band of frequencies is used in the communication of the first messages. Moreover, the electronic device communicates second messages with the second electronic device in the time slots corresponding to second channels in a second band of frequencies using the peer-to-peer communication protocol, where, in the given time slot, a given second channel in the second band of frequencies is used in the communication of the second messages. Note that the communicating of the first messages and the second messages may at least partially overlap in time.