Abstract:
A hybrid transmission is operative to transfer torque between an input member and torque machines and an output member in one of a plurality of fixed gear and continuously variable operating range states through selective application of torque transfer clutches. The torque machines are operative to transfer power from an energy storage device. A method for controlling the hybrid transmission includes operating the hybrid transmission in one of the operating range states, determining a first set of internal system constraints on output torque transferred to the output member, determining a second set of internal system constraints on the output torque transferred to the output member, and determining an allowable output torque range that is achievable within the first set of internal system constraints and the second set of internal system constraints on the output torque transferred to the output member.
Abstract:
A hybrid transmission includes a torque machine and an energy storage device connected thereto. The hybrid transmission is operative to transfer power between an input member and an output member and the torque machines in a fixed gear operating range state. A method for controlling the hybrid transmission includes determining a preferred output torque, determining a relationship between power from the energy storage device and an output torque of the transmission, determining power constraints from the energy storage device, determining motor torque constraints for the torque machine, determining linear torque constraints to the output torque based upon the motor torque constraints for the torque machine, determining quadratic output torque constraints based upon the power constraints from the energy storage device and the relationship between the power from the energy storage device and the output torque of the transmission device, and determining an output torque to the output member responsive to the preferred output torque and achievable based upon the linear output torque constraints and the quadratic output torque constraints.
Abstract:
A hybrid transmission includes a torque machine and an energy storage device connected thereto. The hybrid transmission is operative to transfer power between an input member and an output member and the torque machines in a fixed gear operating range state. A method for controlling the hybrid transmission includes determining a preferred output torque, determining a relationship between power from the energy storage device and an output torque of the transmission, determining power constraints from the energy storage device, determining motor torque constraints for the torque machine, determining linear torque constraints to the output torque based upon the motor torque constraints for the torque machine, determining quadratic output torque constraints based upon the power constraints from the energy storage device and the relationship between the power from the energy storage device and the output torque of the transmission device, and determining an output torque to the output member responsive to the preferred output torque and achievable based upon the linear output torque constraints and the quadratic output torque constraints.
Abstract:
A hybrid transmission is operative to transfer torque between an input member and torque machines and an output member in one of a plurality of fixed gear and continuously variable operating range states through selective application of torque transfer clutches. The torque machines are operative to transfer power from an energy storage device. A method for controlling the hybrid transmission includes operating the hybrid transmission in one of the operating range states, determining a first set of internal system constraints on output torque transferred to the output member, determining a second set of internal system constraints on the output torque transferred to the output member, and determining an allowable output torque range that is achievable within the first set of internal system constraints and the second set of internal system constraints on the output torque transferred to the output member.
Abstract:
A hybrid transmission is operative to transfer power between an input member and first and second torque machines and an output member in a fixed gear operating range state. The first and second torque machines are connected to an energy storage device. A method for controlling the hybrid transmission includes determining an output torque command at the output member, determining motor torque constraints for the first and second torque machines and determining power constraints for the energy storage device, iteratively selecting candidate input torques transferable to the input member and associated output torques, determining a second torque constraint associated with the candidate input torque, determining a third torque constraint associated with the candidate input torque, and determining a preferred input torque comprising the candidate input torque that achieves the commanded output torque at the output member and satisfies the motor torque constraints for the first and second torque machines, satisfies the power constraints for the energy storage device, and satisfies the second and third torque constraints associated with the candidate input torque when operating in the fixed gear operating range state.
Abstract:
A hybrid transmission includes a torque machine and an energy storage device connected thereto. The hybrid transmission is operative to transfer power between an input member and an output member and the torque machine in a continuously variable operating range state. A method for controlling the hybrid transmission includes determining a preferred output torque, determining a relationship between power from the energy storage device and an output torque of the transmission, determining power constraints from the energy storage device, determining motor torque constraints for the torque machine, determining linear torque constraints to the output torque based upon the motor torque constraints for the torque machine, determining quadratic output torque constraints based upon the power constraints from the energy storage device and the relationship between the power from the energy storage device and the output torque of the transmission device, and determining an output torque to the output member responsive to the preferred output torque and achievable based upon the linear output torque constraints and the quadratic output torque constraints.
Abstract:
A method of operating a vehicle powertrain system comprising an electric motor and transmission where the electric motor is operably and selectively coupled to the transmission and adapted to provide an output torque contribution thereto, and the electric motor has a predetermined maximum motor output torque and a predetermined minimum motor output torque which are used to determine a range of permissible control points for at least one transmission control parameter. The method includes establishing a motor torque reserve by performing at least one of decreasing the predetermined maximum motor output torque to a maximum reserved motor output torque and increasing the minimum motor output torque to a minimum reserved motor output torque, wherein the maximum reserved motor output torque and the minimum reserved motor output torque are used in place of the predetermined maximum motor output torque and the predetermined minimum motor output torque, respectively, to determine the range of permissible control points for the at least one transmission control parameter.
Abstract:
An preferred input torque for a hybrid powertrain is determined within a solution space of feasible input torques in accordance with a plurality of powertrain system constraints that results in a minimum overall powertrain system loss. Aggregate powertrain system losses are calculated at feasible input torques and a solution for the input torque corresponding to the minimum aggregate powertrain system loss is converged upon to determine the preferred input torque.
Abstract:
Operation of an electro-mechanical transmission includes determining motor torque constraints and battery power constraints. An additional constraint on the electro-mechanical transmission is determined. A preferred output torque is determined that is achievable within the motor torque constraints and based upon the additional constraint and the battery power constraints.
Abstract:
A powertrain including an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine and first and second electric machines to transmit power to an output member is disclosed. A method for controlling the electro-mechanical transmission includes determining minimum and maximum motor torque constraints for the first and second electric machines, and determining available battery power in terms of battery power constraints. One of a first, a second and a third case is determined based upon the motor torque constraints and the battery power constraints. A preferred output torque is determined for transmitting to the output member of the electro-mechanical transmission.