Abstract:
Subject matter disclosed herein relates to arrangements and techniques that provide for controlling motion of an electrowetting oil within an electrowetting display device. An electrowetting display device comprises a substrate, an electrode on the substrate, a dielectric layer on a first portion of the electrode. The electrode extends along the substrate one of either entirely from a first end of a pixel area to a second end of the pixel area, or from the first end of the pixel area to the second end of the pixel area such that a portion of the substrate is an electrode free portion to thereby define a notch. A first fluid is disposed on a hydrophobic layer and a second fluid is disposed on the first fluid, the second fluid being immiscible with the first fluid. A dielectric constant of the dielectric layer is greater than a dielectric constant of the first fluid.
Abstract:
The subject matter disclosed herein relates to an electrowetting display comprising: a dielectric barrier layer formed on a substrate; a hydrophobic layer formed on the dielectric barrier layer, wherein the dielectric barrier layer maintains a separation between the hydrophobic layer and the substrate; a patterned pixel grid formed on the hydrophobic layer, wherein the patterned pixel grid comprises rows and columns of pixel walls that form field pixels and border pixels; an oil film overlying the hydrophobic layer, wherein the oil film is partitioned by the patterned pixel grid; and an electrolyte overlying the oil film and the patterned pixel grid, wherein one or more of the rows or the columns of pixel walls of the patterned pixel grid includes a substantially nonlinear-shaped portion to reduce sheer stress between the patterned pixel grid and the hydrophobic layer.
Abstract:
An electrowetting display device comprising an electrowetting element comprising a control system, a first fluid, a second fluid immiscible with the first fluid, and a first and second support plate. A first and second electrode are, respectively, overlapped by a first and second portion of a surface of the first support plate. The control system is operable to apply a sequence of voltages, comprising a first voltage between the second fluid and the first electrode and a second voltage between the second fluid and the second electrode, to configure the first fluid to a plurality of configurations, each of the plurality of different configurations respectively corresponding to the same grey level.
Abstract:
A method for fabricating an electrowetting display may include depositing a sacrificial layer on a support plate, etching portions of the sacrificial layer to form liquid duct forms on the support plate, depositing a photoresist layer on the liquid duct forms and the support plate, etching portions of the photoresist layer to form a spacer grid, and removing the liquid duct forms to form liquid ducts between the support plate and the portions of the spacer grid.
Abstract:
A method of manufacturing a support plate including: providing a layer of a first material; providing, using an applied voltage, a layer of a second material on a surface of the layer of the first material; and exposing a part of the surface by removing a part of the layer of the second material.
Abstract:
An electrowetting display device comprising an electrowetting element comprising a control system, a first fluid, a second fluid immiscible with the first fluid, and a first and second support plate. A first and second electrode are, respectively, overlapped by a first and second portion of a surface of the first support plate. The control system is operable to, in response to input data indicative of a first grey level, apply a first voltage between the second fluid and the first electrode such that the second fluid is in contact with at least part of the first portion and, subsequently, apply a second voltage between the second fluid and the second electrode to translate the first fluid such that the second fluid is in contact with at least part of the second portion.
Abstract:
A method for fabricating an electrowetting display may include depositing a sacrificial layer on a support plate, etching portions of the sacrificial layer to form liquid duct forms on the support plate, depositing a photoresist layer on the liquid duct forms and the support plate, etching portions of the photoresist layer to form a spacer grid, and removing the liquid duct forms to form liquid ducts between the support plate and the portions of the spacer grid.
Abstract:
Subject matter disclosed herein relates to arrangements and techniques that provide for controlling motion of an electrowetting oil within an electrowetting display device. An electrowetting display device comprises a substrate, an electrode on the substrate, a dielectric layer on a first portion of the electrode. The electrode extends along the substrate one of either entirely from a first end of a pixel area to a second end of the pixel area, or from the first end of the pixel area to the second end of the pixel area such that a portion of the substrate is an electrode free portion to thereby define a notch. A first fluid is disposed on a hydrophobic layer and a second fluid is disposed on the first fluid, the second fluid being immiscible with the first fluid. A dielectric constant of the dielectric layer is greater than a dielectric constant of the first fluid.
Abstract:
An electrowetting display comprises a first support plate and a second support plate opposite to the first support plate. A plurality of electrowetting elements is provided between the first support plate and the second support plate. A first fluid is disposed within the electrowetting elements on the first support plate, and a second fluid is disposed on the first fluid. The second fluid is substantially immiscible with the first fluid. A plurality of color filter elements arranged in an array and a black matrix structure are disposed on the second support plate. The black matrix structure is positioned such that the black matrix is offset in at least one direction with respect to the electrowetting elements.
Abstract:
The subject matter disclosed herein relates to an electrowetting display comprising: a dielectric barrier layer formed on a substrate; a hydrophobic layer formed on the dielectric barrier layer, wherein the dielectric barrier layer maintains a separation between the hydrophobic layer and the substrate; a patterned pixel grid formed on the hydrophobic layer, wherein the patterned pixel grid comprises rows and columns of pixel walls that form field pixels and border pixels; an oil film overlying the hydrophobic layer, wherein the oil film is partitioned by the patterned pixel grid; and an electrolyte overlying the oil film and the patterned pixel grid, wherein one or more of the rows or the columns of pixel walls of the patterned pixel grid includes a substantially nonlinear-shaped portion to reduce sheer stress between the patterned pixel grid and the hydrophobic layer.