Abstract:
The disclosure relates to a method for operating a positioning actuator system with an electronically commutated actuator drive for driving an actuator element, having the following steps: non-volatile storage of a position information item of the actuator element or of a rotor of the actuator drive which was detected last as a reference position before the positioning actuator system is switched off; in the case of switching on of the positioning actuator system retrieval of the reference position and actuation of the actuator drive by energizing the actuator drive in accordance with a space phasor which is dependent on the reference position. The object is to make available an improved method for releasing blockage of an actuator element or actuation after activation of a motor system with a maximum actuating torque. For positioning actuators with commutated motors such as, for example, synchronous motors.
Abstract:
A method for calibrating a positioner system that has an electronically commutated servomotor and a counterforce-loaded actuator coupled thereto includes actuating the servomotor such that a first motor magnetic field of a first strength is generated and determining a first position specification for the position of the actuator aligned to the first motor magnetic field. The servomotor is actuated such that a second motor magnetic field of a second strength is generated and a second position specification for the position of the actuator aligned to the second motor magnetic field is determined. Based on the first and the second position specifications, a position specification which indicates a position of the actuator under the assumption that the actuator is not loaded with a counterforce is determined. The determined position is allocated to a rotor position which corresponds to the direction of the first and second motor magnetic field.
Abstract:
An actuator system for operating a flap valve in a motor vehicle, comprising: a drive system having an electronically commutated electric motor; a movable actuating member; a mechanism that couples the drive system to the actuating member so that a displacement of the actuating member is brought about upon activation of the drive system; a position sensor for sensing a position of the actuating member on the actuating member or in the mechanism, and for making available a corresponding position indication; a control unit to activate the drive system to move the actuating member, the electric motor of the drive system being electronically commutated, the control unit being configured to make available to the electric motor, in order to move the actuating member, activation signals dependent on the position indication made available, which signals bring about a predefined drive torque or a predefined rotation speed of the electric motor.
Abstract:
The disclosure relates to a method for operating a positioning actuator system with an electronically commutated actuator drive for driving an actuator element, having the following steps: non-volatile storage of a position information item of the actuator element or of a rotor of the actuator drive which was detected last as a reference position before the positioning actuator system is switched off; in the case of switching on of the positioning actuator system retrieval of the reference position and actuation of the actuator drive by energizing the actuator drive in accordance with a space phasor which is dependent on the reference position. The object is to make available an improved method for releasing blockage of an actuator element or actuation after activation of a motor system with a maximum actuating torque. For positioning actuators with commutated motors such as, for example, synchronous motors.
Abstract:
An actuator system for operating a flap valve in a motor vehicle, comprising: a drive system having an electronically commutated electric motor; a movable actuating member; a mechanism that couples the drive system to the actuating member so that a displacement of the actuating member is brought about upon activation of the drive system; a position sensor for sensing a position of the actuating member on the actuating member or in the mechanism, and for making available a corresponding position indication; a control unit to activate the drive system to move the actuating member, the electric motor of the drive system being electronically commutated, the control unit being configured to make available to the electric motor, in order to move the actuating member, activation signals dependent on the position indication made available, which signals bring about a predefined drive torque or a predefined rotation speed of the electric motor.
Abstract:
A method for controlling a position of an actuating element, to which a restoring force is applied, in an actuator system having an electronically commutated electrical machine, includes controlling the position of the actuating element as a function of a predefined setpoint position specification and an actual position specification. A position control unit provides an actuating variable which is associated with a space vector with which a stator arrangement of the electrical machine can be driven. The method further includes applying a correction variable to the space vector in order to correct a space vector angle of the space vector; providing an auxiliary signal; varying the space vector angle of the space vector, which is defined by the actuating variable, by the auxiliary signal; and integrating a variable to give an integration value.
Abstract:
A method for calibrating a positioner system that has an electronically commutated servomotor and a counterforce-loaded actuator coupled thereto includes actuating the servomotor such that a first motor magnetic field of a first strength is generated and determining a first position specification for the position of the actuator aligned to the first motor magnetic field. The servomotor is actuated such that a second motor magnetic field of a second strength is generated and a second position specification for the position of the actuator aligned to the second motor magnetic field is determined. Based on the first and the second position specifications, a position specification which indicates a position of the actuator under the assumption that the actuator is not loaded with a counterforce is determined. The determined position is allocated to a rotor position which corresponds to the direction of the first and second motor magnetic field.
Abstract:
A method for determining a mixup in the terminals of a position encoder having a position encoder motor, which is bidirectionally drivable via a plurality of terminals, so that a mixup of at least two of the terminals of the position encoder motor leads to a reversal in the actuation direction of the position encoder, having the following steps of setting an actuating element of the position encoder to a zero setting, from which a motion of the actuating element is possible in one or two directions; driving the position encoder motor according to a diagnostic variable, which is selected so that, based on the actuation using the diagnostic variable, in the case of a non-mixup of the terminals and in the case of a mixup of the terminals, different absolute values of the changes are to be expected in the changes of the actuation position of the actuating element; recording a current change in the actuation position of the actuating element that comes about by the driving of the position encoder motor; establishing a mixup of at least two of the terminals, if the absolute value of the current change of the actuation position of the actuating element deviates from the absolute value of the change in the actuation position that is to be expected.
Abstract:
A method for determining a mixup in the terminals of a position encoder having a position encoder motor, which is bidirectionally drivable via a plurality of terminals, so that a mixup of at least two of the terminals of the position encoder motor leads to a reversal in the actuation direction of the position encoder, having the following steps of setting an actuating element of the position encoder to a zero setting, from which a motion of the actuating element is possible in one or two directions; driving the position encoder motor according to a diagnostic variable, which is selected so that, based on the actuation using the diagnostic variable, in the case of a non-mixup of the terminals and in the case of a mixup of the terminals, different absolute values of the changes are to be expected in the changes of the actuation position of the actuating element; recording a current change in the actuation position of the actuating element that comes about by the driving of the position encoder motor; establishing a mixup of at least two of the terminals, if the absolute value of the current change of the actuation position of the actuating element deviates from the absolute value of the change in the actuation position that is to be expected.
Abstract:
An actuating device for providing a physical output quantity includes: a control element for providing the physical output quantity; an actuator unit triggering the control element according to a triggering variable; and a communication unit receiving the triggering variable, which communication unit sends actuator information which contains an indication about a correlation between the provided physical output quantity of the actuating device and the triggering variable.