Abstract:
Systems, methods, and techniques for detecting the recording activity of a sensor are described. A monitoring system includes a sensor that is configured to generate sensor data, as well as a failsafe circuit that is configured to monitor an electronic signal of the sensor and determine that the sensor is recording. The system can further include a control unit that receives indication from the failsafe circuit that the sensor is recording and, based on determining that the control unit did not request the sensor to record or that the control unit is not aware that the sensor is recording, the system outputs a signal, e.g. to an indicator light, indicating that the sensor is recording.
Abstract:
A circuit for direct current (DC) offset estimation comprises a quantile value circuit and a signal processor. The quantile value circuit determines a plurality of quantile values of an input signal and includes a plurality of quantile filters. Each quantile filter includes a comparator, a level shifter, a monotonic transfer function component, and a latched integrator. The comparator compares the input signal and a quantile value. The level shifter shifts the output of the comparator. The monotonic transfer function component determines the magnitude of the shifted signal and provide a transfer function signal. The latched integrator suppresses transient characteristics of the transfer function signal and provide the quantile value. The signal processor is configured to calculate a weighted average of the quantile values to yield a DC offset estimate.
Abstract:
The operation of electrical appliances receiving electrical power from an electrical system may be indirectly monitored using monitoring units engaged with outlets on branch circuits of the electrical system. Electrical systems providing power to appliances to be monitored in accordance with the present invention may comprise split phase alternating current systems, tri-phase systems, or any other type of electrical system. Known loads may be applied to calibrate the monitoring system. The monitoring system may measure the power consumption of appliances operating on the electrical system and/or detect possible fault conditions. The application of a known load to each phase of the electrical system for calibration permits different portions of the electrical system to be isolated and, therefor, provides improved accuracy in monitoring power consumption and detection of potential fault conditions.
Abstract:
A circuit for direct current (DC) offset estimation comprises a quantile value circuit and a signal processor. The quantile value circuit determines a plurality of quantile values of an input signal and includes a plurality of quantile filters. Each quantile filter includes a comparator, a level shifter, a monotonic transfer function component, and a latched integrator. The comparator compares the input signal and a quantile value. The level shifter shifts the output of the comparator. The monotonic transfer function component determines the magnitude of the shifted signal and provide a transfer function signal. The latched integrator suppresses transient characteristics of the transfer function signal and provide the quantile value. The signal processor is configured to calculate a weighted average of the quantile values to yield a DC offset estimate.
Abstract:
The operation of electrical appliances receiving electrical power from an electrical system may be indirectly monitored using monitoring units engaged with outlets on branch circuits of the electrical system. Electrical systems providing power to appliances to be monitored in accordance with the present invention may comprise split phase alternating current systems, tri-phase systems, or any other type of electrical system. Known loads may be applied to calibrate the monitoring system. The monitoring system may measure the power consumption of appliances operating on the electrical system and/or detect possible fault conditions. The application of a known load to each phase of the electrical system for calibration permits different portions of the electrical system to be isolated and, therefor, provides improved accuracy in monitoring power consumption and detection of potential fault conditions.
Abstract:
The operation of electrical appliances receiving electrical power from an electrical system may be indirectly monitored using monitoring units engaged with outlets on branch circuits of the electrical system. Electrical systems providing power to appliances to be monitored in accordance with the present invention may comprise split phase alternating current systems, tri-phase systems, or any other type of electrical system. Known loads may be applied to calibrate the monitoring system. The monitoring system may measure the power consumption of appliances operating on the electrical system and/or detect possible fault conditions. The monitoring system may be distributed across multiple monitoring units and other computing devices. Output devices may be used to output a summary of the power consumption or other operation of monitored electrical appliances.
Abstract:
A circuit for direct current (DC) offset estimation comprises a quantile value circuit and a signal processor. The quantile value circuit determines a plurality of quantile values of an input signal and includes a plurality of quantile filters. Each quantile filter includes a comparator, a level shifter, a monotonic transfer function component, and a latched integrator. The comparator compares the input signal and a quantile value. The level shifter shifts the output of the comparator. The monotonic transfer function component determines the magnitude of the shifted signal and provide a transfer function signal. The latched integrator suppresses transient characteristics of the transfer function signal and provide the quantile value. The signal processor is configured to calculate a weighted average of the quantile values to yield a DC offset estimate.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing actions based on a determined relative composition of light. In some implementations, data representing an amount of ambient light detected within the portion of the property by a light sensor located at the portion of the property is initially obtained. Data indicating (i) a shape of an optical spectra for a natural light source, and (ii) a shape of an optical spectra for a non-natural light source is then obtained. A relative composition of the ambient light detected within the portion of the property is determined. An estimated amount of natural light within the portion of the property is then determined. In response, the amount of light output by one or more light sources located at the portion of the property is adjusted.
Abstract:
Scene and/or state information may be used to facilitate processing an input to separate one or more signals within the input, to shape the signal within the input, and/or for other processing of the input or signal(s) within the input. A scene determination may be made based upon location data, time data, data describing the received input, or other basis. A state determination may be made based upon the scene determination, properties of a signal itself, or other information such as location, time, etc. By determining an appropriate scene and/or state, processing of an input and/or a signal within an input may proceed in a fashion determined to provide the most valuable information for output. Systems and methods in accordance with the invention may be implemented in a wide variety of baseband processing systems, such as hearing aids and energy consumption monitoring systems.
Abstract:
The operation of electrical appliances receiving electrical power from an electrical system may be indirectly monitored using monitoring units engaged with outlets on branch circuits of the electrical system. Electrical systems providing power to appliances to be monitored in accordance with the present invention may comprise split phase alternating current systems, tri-phase systems, or any other type of electrical system. Known loads may be applied to calibrate the monitoring system. The monitoring system may measure the power consumption of appliances operating on the electrical system and/or detect possible fault conditions. The application of a known load to each phase of the electrical system for calibration permits different portions of the electrical system to be isolated and, therefor, provides improved accuracy in monitoring power consumption and detection of potential fault conditions.