Abstract:
The operation of electrical appliances receiving electrical power from an electrical system may be indirectly monitored using monitoring units engaged with outlets on branch circuits of the electrical system. Electrical systems providing power to appliances to be monitored in accordance with the present invention may comprise split phase alternating current systems, tri-phase systems, or any other type of electrical system. Known loads may be applied to calibrate the monitoring system. The monitoring system may measure the power consumption of appliances operating on the electrical system and/or detect possible fault conditions. The monitoring system may be distributed across multiple monitoring units and other computing devices. Output devices may be used to output a summary of the power consumption or other operation of monitored electrical appliances.
Abstract:
The operation of electrical appliances receiving electrical power from an electrical system may be indirectly monitored using monitoring units engaged with outlets on branch circuits of the electrical system. Electrical systems providing power to appliances to be monitored in accordance with the present invention may comprise split phase alternating current systems, tri-phase systems, or any other type of electrical system. Known loads may be applied to calibrate the monitoring system. The monitoring system may measure the power consumption of appliances operating on the electrical system and/or detect possible fault conditions. Fault conditions may be detected by comparing obtained voltage or power signatures of appliances to expected voltage or power signatures. Expected voltage or power signatures may be obtained, for example, using historical data, a database providing typical voltage or power signatures, or through other means.
Abstract:
The operation of electrical appliances receiving electrical power from an electrical system may be indirectly monitored using monitoring units engaged with outlets on branch circuits of the electrical system. Electrical systems providing power to appliances to be monitored in accordance with the present invention may comprise split phase alternating current systems, tri-phase systems, or any other type of electrical system. Known loads may be applied to calibrate the monitoring system. The monitoring system may measure the power consumption of appliances operating on the electrical system and/or detect possible fault conditions. The application of a known load to each phase of the electrical system for calibration permits different portions of the electrical system to be isolated and, therefor, provides improved accuracy in monitoring power consumption and detection of potential fault conditions.
Abstract:
The operation of electrical appliances receiving electrical power from an electrical system may be indirectly monitored using monitoring units engaged with outlets on branch circuits of the electrical system. Electrical systems providing power to appliances to be monitored in accordance with the present invention may comprise split phase alternating current systems, tri-phase systems, or any other type of electrical system. Known loads may be applied to calibrate the monitoring system. The monitoring system may measure the power consumption of appliances operating on the electrical system and/or detect possible fault conditions. The application of a known load to each phase of the electrical system for calibration permits different portions of the electrical system to be isolated and, therefor, provides improved accuracy in monitoring power consumption and detection of potential fault conditions.
Abstract:
The operation of electrical appliances receiving electrical power from an electrical system may be indirectly monitored using monitoring units engaged with outlets on branch circuits of the electrical system. Electrical systems providing power to appliances to be monitored in accordance with the present invention may comprise split phase alternating current systems, tri-phase systems, or any other type of electrical system. Known loads may be applied to calibrate the monitoring system. The monitoring system may measure the power consumption of appliances operating on the electrical system and/or detect possible fault conditions. The monitoring system may be distributed across multiple monitoring units and other computing devices. Output devices may be used to output a summary of the power consumption or other operation of monitored electrical appliances.
Abstract:
The operation of electrical appliances receiving electrical power from an electrical system may be indirectly monitored using monitoring units engaged with outlets on branch circuits of the electrical system. Electrical systems providing power to appliances to be monitored in accordance with the present invention may comprise split phase alternating current systems, tri-phase systems, or any other type of electrical system. Known loads may be applied to calibrate the monitoring system. The monitoring system may measure the power consumption of appliances operating on the electrical system and/or detect possible fault conditions. The application of a known load to each phase of the electrical system for calibration permits different portions of the electrical system to be isolated and, therefor, provides improved accuracy in monitoring power consumption and detection of potential fault conditions.
Abstract:
The operation of electrical appliances receiving electrical power from an electrical system may be indirectly monitored using monitoring units engaged with outlets on branch circuits of the electrical system. Electrical systems providing power to appliances to be monitored in accordance with the present invention may comprise split phase alternating current systems, tri-phase systems, or any other type of electrical system. Known loads may be applied to calibrate the monitoring system. The monitoring system may measure the power consumption of appliances operating on the electrical system and/or detect possible fault conditions. The application of a known load to each phase of the electrical system for calibration permits different portions of the electrical system to be isolated and, therefor, provides improved accuracy in monitoring power consumption and detection of potential fault conditions.
Abstract:
The operation of electrical appliances receiving electrical power from an electrical system may be indirectly monitored using monitoring units engaged with outlets on branch circuits of the electrical system. Electrical systems providing power to appliances to be monitored in accordance with the present invention may comprise split phase alternating current systems, tri-phase systems, or any other type of electrical system. Known loads may be applied to calibrate the monitoring system. The monitoring system may measure the power consumption of appliances operating on the electrical system and/or detect possible fault conditions. The application of a known load to each phase of the electrical system for calibration permits different portions of the electrical system to be isolated and, therefor, provides improved accuracy in monitoring power consumption and detection of potential fault conditions.
Abstract:
The operation of electrical appliances receiving electrical power from an electrical system may be indirectly monitored using monitoring units engaged with outlets on branch circuits of the electrical system. Electrical systems providing power to appliances to be monitored in accordance with the present invention may comprise split phase alternating current systems, tri-phase systems, or any other type of electrical system. Known loads may be applied to calibrate the monitoring system. The monitoring system may measure the power consumption of appliances operating on the electrical system and/or detect possible fault conditions. The monitoring system may be distributed across multiple monitoring units and other computing devices. Output devices may be used to output a summary of the power consumption or other operation of monitored electrical appliances.