Abstract:
Topics are determined for short text messages using an unsupervised topic model. In a training corpus created from a number of short text messages, a vocabulary of words is identified, and for each word a distributed vector representation is obtained by processing windows of the corpus having a fixed length. The corpus is modeled as a Gaussian mixture model in which Gaussian components represent topics. To determine a topic of a sample short text message, a posterior distribution over the corpus topics is obtained using the Gaussian mixture model.
Abstract:
Topics are determined for short text messages using an unsupervised topic model. In a training corpus created from a number of short text messages, a vocabulary of words is identified, and for each word a distributed vector representation is obtained by processing windows of the corpus having a fixed length. The corpus is modeled as a Gaussian mixture model in which Gaussian components represent topics. To determine a topic of a sample short text message, a posterior distribution over the corpus topics is obtained using the Gaussian mixture model.
Abstract:
A system, method and computer-readable storage devices for providing unsupervised normalization of noisy text using distributed representation of words. The system receives, from a social media forum, a word having a non-canonical spelling in a first language. The system determines a context of the word in the social media forum, identifies the word in a vector space model, and selects an “n-best” vector paths in the vector space model, where the n-best vector paths are neighbors to the vector space path based on the context and the non-canonical spelling. The system can then select, based on a similarity cost, a best path from the n-best vector paths and identify a word associated with the best path as the canonical version.
Abstract:
Topics are determined for short text messages using an unsupervised topic model. In a training corpus created from a number of short text messages, a vocabulary of words is identified, and for each word a distributed vector representation is obtained by processing windows of the corpus having a fixed length. The corpus is modeled as a Gaussian mixture model in which Gaussian components represent topics. To determine a topic of a sample short text message, a posterior distribution over the corpus topics is obtained using the Gaussian mixture model.
Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for bootstrapping a language translation system. A system configured to practice the method performs a bidirectional web crawl to identify a bilingual website. The system analyzes data on the bilingual website to make a classification decision about whether the root of the bilingual website is an entry point for the bilingual website. The bilingual site can contain pairs of parallel pages. Each pair can include a first website in a first language and a second website in a second language, and a first portion of the first web page corresponds to a second portion of the second web page. Then the system analyzes the first and second web pages to identify corresponding information pairs in the first and second languages, and extracts the corresponding information pairs from the first and second web pages for use in a language translation model.
Abstract:
Topics are determined for short text messages using an unsupervised topic model. In a training corpus created from a number of short text messages, a vocabulary of words is identified, and for each word a distributed vector representation is obtained by processing windows of the corpus having a fixed length. The corpus is modeled as a Gaussian mixture model in which Gaussian components represent topics. To determine a topic of a sample short text message, a posterior distribution over the corpus topics is obtained using the Gaussian mixture model.
Abstract:
Topics are determined for short text messages using an unsupervised topic model. In a training corpus created from a number of short text messages, a vocabulary of words is identified, and for each word a distributed vector representation is obtained by processing windows of the corpus having a fixed length. The corpus is modeled as a Gaussian mixture model in which Gaussian components represent topics. To determine a topic of a sample short text message, a posterior distribution over the corpus topics is obtained using the Gaussian mixture model.
Abstract:
Topics are determined for short text messages using an unsupervised topic model. In a training corpus created from a number of short text messages, a vocabulary of words is identified, and for each word a distributed vector representation is obtained by processing windows of the corpus having a fixed length. The corpus is modeled as a Gaussian mixture model in which Gaussian components represent topics. To determine a topic of a sample short text message, a posterior distribution over the corpus topics is obtained using the Gaussian mixture model.
Abstract:
Disclosed herein are systems, computer-implemented methods, and tangible computer-readable media for enriching spoken language translation with dialog acts. The method includes receiving a source speech signal, tagging dialog acts associated with the received source speech signal using a classification model, dialog acts being domain independent descriptions of an intended action a speaker carries out by uttering the source speech signal, producing an enriched hypothesis of the source speech signal incorporating the dialog act tags, and outputting a natural language response of the enriched hypothesis in a target language. Tags can be grouped into sets such as statement, acknowledgement, abandoned, agreement, question, appreciation, and other. The step of producing an enriched translation of the source speech signal uses a dialog act specific translation model containing a phrase translation table.
Abstract:
A system, method and computer-readable storage devices for providing unsupervised normalization of noisy text using distributed representation of words. The system receives, from a social media forum, a word having a non-canonical spelling in a first language. The system determines a context of the word in the social media forum, identifies the word in a vector space model, and selects an “n-best” vector paths in the vector space model, where the n-best vector paths are neighbors to the vector space path based on the context and the non-canonical spelling. The system can then select, based on a similarity cost, a best path from the n-best vector paths and identify a word associated with the best path as the canonical version.