Abstract:
A hydraulic control device that includes a second solenoid valve that is capable of supplying a resisting pressure that maintains the switching valve in the non-reverse state against the reverse range pressure, wherein the switching valve is maintained in the non-reverse state by supplying the resisting pressure from the second solenoid valve while a travel range is switched to at least a reverse range during forward travel.
Abstract:
In a control device for a vehicle including: a dog clutch mechanism that is disposed in a power transmission path in which a driving force is transmitted from an engine to a wheel and is operated by a hydraulic actuator; and an electric oil pump that supplies hydraulic pressure to the hydraulic actuator, rotation of the engine is stopped in a state in which the dog clutch mechanism is engaged by the hydraulic pressure supplied from the electric oil pump at a time during an engine stop operation, the rotation of the engine is started in the state in which the dog clutch mechanism is engaged by the hydraulic pressure supplied from the electric oil pump at a time during an engine restart operation, hence occurrence of up-lock of the dog clutch mechanism is prevented.
Abstract:
At the time when a hydraulic actuator is operated to engage a dog clutch, after it is detected that a hydraulic pressure for operating the hydraulic actuator is higher than or equal to a predetermined hydraulic pressure, it is determined whether the dog clutch is not engaged. Therefore, non-engagement determination due to insufficient hydraulic pressure for operating the hydraulic actuator is prevented. Thus, at the time when the hydraulic actuator is operated to engage the dog clutch, it is possible to prevent consumption of time to engage the dog clutch due to unnecessary re-engagement operation.
Abstract:
When a line pressure is dominated (determined) by at least one of a primary pressure and a secondary pressure during idling of a continuously variable transmission, the hydraulic pressure that is applied to at least one of pulleys, to which the hydraulic pressure larger than a clutch pressure is applied, is reduced. On the other hand, when the line pressure is dominated by the clutch pressure during idling of the continuously variable transmission, the speed gear ratio of the continuously variable transmission is controlled to a lowest speed gear ratio.
Abstract:
When there is a failure in a speed ratio control linear solenoid valve, or the like, a controller for a vehicle power transmission system establishes a state where torque is transmitted via a gear mechanism, and, in this state, determines whether the speed ratio control linear solenoid valve, or the like, has returned to a normal state by comparing a target speed ratio and actual speed ratio of a continuously variable transmission with each other. It is determined whether the speed ratio control linear solenoid valve, or the like, has returned to the normal state by changing the target speed ratio of the belt-type continuously variable transmission and then comparing the target speed ratio with the actual speed ratio. Thus, when the speed ratio control linear solenoid valve, or the like, has returned from a fail-safe state to the normal state, a feeling of strangeness of a driver is suppressed.
Abstract:
An engagement operation of a dog clutch is carried out while an engagement operation of a second clutch is being carried out, that is, during a situation that an uplock is hard to occur because of a phase shift generated between meshing counterpart members of the dog clutch. Thus, the dog clutch is easily engaged, and it is possible to facilitate preparation for transmission of power through a first power transmission path. If the dog clutch is not engaged, the second clutch is engaged and a second power transmission path is established, so it is possible to start moving a vehicle by transmitting power through the second power transmission path. Thus, when the dog clutch is in a non-engaged state at the time of an N-to-D shift during a stop of the vehicle, it is possible to ensure the startability of the vehicle.
Abstract:
A control apparatus for a vehicular drive unit is provided. The vehicular drive unit includes a continuously variable transmission, and a clutch. The control apparatus includes an electronic control unit that is configured to acquire an oil temperature of hydraulic oil for controlling the continuously variable transmission and the clutch, and control the clutch such that a torque capacity of the clutch becomes smaller than a torque capacity that is set in a case where an oil temperature of the hydraulic oil is higher than a predetermined oil temperature, when the oil temperature is equal to or lower than the predetermined oil temperature, or control the continuously variable transmission such that a speed ratio of the continuously variable transmission becomes equal to or larger than a lower limit set in advance when the oil temperature of the hydraulic oil is equal to or lower than the predetermined oil temperature.
Abstract:
When neutral control is started by placing a CVT drive clutch in a semi-engaged state while a vehicle is decelerating in a state where a second power transmission path is established, a clutch mechanism that is semi-engaged in neutral control while the vehicle is decelerating is changed from the CVT drive clutch to a forward clutch before a stop of the vehicle, so it is possible to continue the neutral control until a stop of the vehicle. At a stop of the vehicle, a power transmission path is already changed to a first power transmission path that establishes a gear ratio (EL) higher than a highest gear ratio (γmax) that can be established by the second power transmission path. Thus, right after a stop of the vehicle, it is possible to execute idle stop control.
Abstract:
A control apparatus for a power transmission system is provided. The control apparatus includes an electronic control unit. The electronic control unit is configured to, when a discharge flow rate of a mechanical oil pump is smaller than a predetermined flow rate and an electric oil pump is being driven while a vehicle is traveling, determine whether a decrease in the operating hydraulic pressure has occurred. The electronic control unit is configured to, when a first engagement device is controlled from a released state toward an engaged state, control a first control pressure such that the first control pressure in a case where a decrease in a operating hydraulic pressure has occurred is lower than the first control pressure in a case where a decrease in the operating hydraulic pressure does not occur.
Abstract:
A clutch mechanism is configured to selectively change between a first power transmission path and a second power transmission path. The first power transmission path is configured to transmit torque to an output shaft via a transmission mechanism. The second power transmission path is configured to transmit the torque to the output shaft via a continuously variable transmission mechanism. An electronic control unit is configured to: (a) selectively change a power transmission path during traveling to one of the first power transmission path and the second power transmission path by controlling the clutch mechanism; and (b) in changing the power transmission path by controlling the clutch mechanism, control an operating point of the internal combustion engine during a change of the power transmission path so that the operating point crosses over an optimum fuel, consumption line of the internal combustion engine.