Abstract:
A conductive adhesive film according to an embodiment includes: an adhesive base layer including first and second major surfaces facing each other; and a plurality of discrete individual particles distributed in the adhesive base layer, wherein outer surfaces of the particles are coated with metal at least in part to form metal coatings, and the metal coatings are connected with one another and are extended between the first and second major surfaces, such that an electrically and mechanically continuous three-dimensional porous network of the metal is formed.
Abstract:
An electrically conductive bonding tape includes a conductive self-supporting first layer conductive in each of three mutually orthogonal directions and including conductive opposing first and second major surfaces, an conductive second layer coated on the first major surface of the self-supporting first layer and having at least 60% by weight of nickel, the second layer having an exposed major surface facing away from the first major surface of the self-supporting first layer and exposing at least some of the nickel in the second layer, and a conductive adhesive third layer bonded to the second major surface of the self-supporting first layer opposite the second layer. The adhesive third layer is conductive in at least one of the three mutually orthogonal directions and includes a plurality of conductive elements dispersed in an insulative material, at least some of the conductive elements physically contacting the self-supporting first layer.
Abstract:
An electrically conductive, single-sided tape includes a conductive adhesive layer, which includes a first conductive porous substrate having a plurality of passageways and an adhesive material positioned within at least a portion of the passageways; and a second conductive porous substrate positioned adjacent the conductive adhesive layer. Optionally, the electrically conductive, single-sided tape may include an opaque coating adjacent to a major surface of the second conductive porous substrate. Optionally, the adhesive material may include a plurality of conductive particles dispersed within the adhesive material.
Abstract:
Disclosed are polymer resins, including polymer resin sheets, having good electroconductivity and a method for manufacturing the same. The polymer resins exhibit flexibility and show electroconductivity on their surface as well as along their thickness, and thus can be used as electromagnetic wave-shielding materials having impact- and vibration-absorbing properties as well as conductivity.
Abstract:
Disclosed are polymer resins, including polymer resin sheets, having good electroconductivity and a method for manufacturing the same. The polymer resins exhibit flexibility and show electroconductivity on their surface as well as along their thickness, and thus can be used as electromagnetic wave-shielding materials having impact- and vibration-absorbing properties as well as conductivity.
Abstract:
An antenna includes a self-supporting electrically conductive wire having a width (W) and extending longitudinally along a length and between first and second ends of the conductive wire. The conductive wire forms one or more loops and comprises an electrically conductive layer disposed on and aligned with an adhesive layer. A width and a length of each of the conductive and adhesive layers are substantially co-extensive with the width and the length of the conductive wire.
Abstract:
An electrically conductive, single-sided tape includes a conductive adhesive layer and a conductive polymeric layer positioned adjacent the conductive adhesive layer. The conductive adhesive layer includes a conductive, porous substrate having a plurality of passageways and an adhesive material positioned within at least a portion of the passageways. Optionally, the adhesive material may include a plurality of conductive particles dispersed within the adhesive material.
Abstract:
A conductive double-sided tape includes a conductive, nonwoven adhesive layer including an adhesive material, a nonconductive, nonwoven substrate having a plurality of passageways, and a plurality of conductive particles penetrating through the nonconductive, nonwoven substrate and the adhesive material. The nonconductive, nonwoven substrate is embedded in the adhesive material. The conductive particles have a D99 particle size larger than a thickness of the nonconductive, nonwoven substrate and the adhesive material.
Abstract:
The disclosure relates to an integral electronic stack and a multi-layer stack. Specifically, according to an embodiment of the disclosure, there is provided an integral electronic stack for grounding an electrically conductive component in which passive intermodulation (PIM) is reduced, wherein the integral electronic stack includes a first integral stack and a second integral stack, the first integral stack being bonded to the second integral stack, wherein the first integral stack includes: a first board which is substantially rigid; a first electrically conductive layer which is disposed on at least part of a first main surface of the first board; a first electrically conductive adhesive layer and a second electrically conductive adhesive layer; and a first electrically conductive film which is disposed between the first electrically conductive adhesive layer and the second electrically conductive adhesive layer, and is bonded to the first electrically conductive adhesive layer and the second electrically conductive adhesive layer, respectively, the first electrically conductive adhesive layer and the second electrically conductive adhesive layer including a plurality of electrically conductive elements substantially distributed in an electrically insulative material, wherein the first electrically conductive adhesive layer bonds the first electrically conductive film to the one or more first electrically conductive layer.
Abstract:
A conductive adhesive film according to an embodiment includes: an adhesive base layer including first and second major surfaces facing each other; and a plurality of discrete individual particles distributed in the adhesive base layer, wherein outer surfaces of the particles are coated with metal at least in part to form metal coatings, and the metal coatings are connected with one another and are extended between the first and second major surfaces, such that an electrically and mechanically continuous three-dimensional porous network of the metal is formed.