Abstract:
An optical system includes a display, a reflective polarizer, and a glare trap. The glare trap includes a plurality of slats having a length L and a width W, L/W≥10. The slats form a plurality of elongated slots therebetween substantially filled with air. The reflective polarizer has an average optical reflectance of at least 40% for a first polarization state and an average optical transmittance of at least 40% for an orthogonal second polarization state. For each of the first and second polarization states, the glare trap has an average specular optical transmittance of between about 20% to about 80% and an average total optical reflectance of less than about 20%. For at least one wavelength in the visible wavelength range, an optical transmittance of the glare trap includes a first transmittance peak at a first peak angle with a corresponding FWHIM of less than about 30 degrees.
Abstract:
A nanostructured article having a first layer with a nanostructured surface is described. The nanostructured surface includes a plurality of pillars extending from a base surface of the first layer. The pillars have an average height greater than an average lateral dimension of the pillars. An average center-to-center spacing between pillars is no more than 2000 nm. The average lateral dimension is no less than 50 nm. Each pillar in the plurality of pillars has at least a lower portion and an upper portion where the lower portion is between the upper portion and the base surface, and the upper and lower portions have differing compositions. The nanostructured article includes a second layer disposed over the plurality of pillars and extending continuously to the base surface.
Abstract:
The present disclosure describes light delivery and distribution components of a light duct that can be used as a luminaire, such as a bollard-style luminaire that can be useful for the illumination of pedestrian crosswalks, the light engine useful in the luminaire, and methods for making the light engine and the luminaire. The present disclosure further describes methods for crosswalk illumination using the bollard-style luminaires, and methods of communication between bollard luminaires. The bollard luminaire includes a design that generally confines light to illuminate the crosswalk and the pedestrian in the crosswalk, such that light that could produce glare for the pedestrian and/or a driver approaching the crosswalk is minimized.
Abstract:
The disclosure generally relates to concentrating daylight collectors and in particular to concentrating daylight collectors useful for interior lighting of a building. The concentrating daylight collectors generally include a cassegrain-type concentrator section that provides for a full-tracking solar collector with one moving part and with a high efficiency of coupling of collected solar irradiation to a stationary duct. In some cases, the disclosed concentrating daylight collectors can be used more conventionally, such as for directing sunlight onto a photo-voltaic cell for generation of electrical power, or an absorbing surface for extraction of thermal energy.
Abstract:
A computer-implemented method of designing an organic light emitting diode (OLED) device having a resonance layer. The method includes calculating the reflectance of red, green, and blue spectrums of the OLED device to generate, respectively, red, green, and blue reflectance values. A thickness and possibly a material of the resonance layer is selected such that the red, green, and blue reflectance values are substantially equal to one another or within a particular deviation of one another. The OLED device can have multiple resonance layers, in which case the thicknesses and materials of the resonance layers are selected to provide substantially equal red, green, and blue reflectances.
Abstract:
Optical stacks configured to reduce variation of color with view angle in organic light emitting diode (OLED) displays having an emissive OLED layer are described. An optical stack having first and second layers with differing refractive indices includes a nanostructured interface between the first and second layers. The second layer can be disposed between the first layer and the emissive layer with the nanostructured interface proximate to, and outside of, an evanescent zone of the emissive layer. The nanostructured interface has a substantially azimuthally symmetric power spectral density (PSD) and a wavenumber-PSD product has a maximum for a wavenumber larger than 6 radians/micrometer times the refractive index of the second layer. For all wavenumbers lower than 6 radians/micrometer times the second refractive index, the wavenumber-PSD product is no more than 0.3 times the maximum.
Abstract:
A front and back reflector are arranged to form a hollow light recycling cavity having an output region, and one or more light sources (e.g. LEDs) are disposed to emit light into the cavity. In one aspect, the back reflector has a design characterized by a first and second parameter. The first design parameter is a ratio of the collective emitting area of the light sources Aemit to the area of the output region Aout, and Aemit/Aout is preferably from 0.0001 to 0.1. The second design parameter is SEP/H, where H is the depth of the recycling cavity, and SEP is an average plan view source separation associated with the light sources. Other aspects of the disclosed extended area light sources are also described.
Abstract:
The disclosure generally relates to efficient hollow light duct bends (200) that are capable of retaining a higher on axis transmission for partially collimated light propagating within a light duct (220, 230). In particular, the described hollow light duct bends (200) include input and output plates (214, 216) that have low reflectivity for near nonnal incident light, and high reflectivity for near grazing incident light.
Abstract:
A backlight that includes a front reflector and a back reflector that form a hollow light recycling cavity including an output surface is disclosed. The backlight further includes one or more light sources disposed to emit light into the light recycling cavity. The front reflector includes an on-axis average reflectivity of at least 90% for visible light polarized in a first plane, and an on-axis average reflectivity of at least 25% but less than 90% for visible light polarized in a second plane perpendicular to the first plane.