Abstract:
A magnetic recording and reading device includes a perpendicular magnetic recording medium, a perpendicular magnetic head having a recording head width having a heat-generating portion and a reading head, a fine adjustment portion, and a R/W-IC. The perpendicular magnetic head is configured to perform magnetic recording on the recording medium while locally heating the recording medium so as to enable a change of the coercive force of the recording medium during the recording after correcting of the position of the perpendicular magnetic head by the fine adjustment portion is completed, and to perform reading of the magnetic recording information with the aid of the reading head after correcting of the position of the perpendicular magnetic head by the fine adjustment portion is completed.
Abstract:
A magnetic recording medium includes a non-magnetic substrate, and a magnetic layer provided on the non-magnetic substrate. The value of the product Br.sub.1 .delta. of the residual flux density Br.sub.1 of the magnetic layer determined in a recording direction and the thickness .delta. of the magnetic layer is not less than 5 G.mu.m and not more than 180 G.mu.m; the value of the ratio of Br.sub.1 to the residual flux density Br.sub.2 determined in a direction parallel to the substrate plane and perpendicular to the recording direction, Br.sub.1 /Br.sub.2, is not less than 1.3 and not more than 3; the surface of the non-magnetic substrate has texture grooves therein extending predominantly in the recording direction; and the average roughness factor Ra of the surface of the magnetic layer determined in a direction perpendicular to the substrate plane and perpendicular to the recording direction is not less than 0.3 nm and not more than 1.9 nm. Alternatively, the value of the product Br.delta. of the residual flux density Br of the magnetic layer determined in the recording direction and the thickness .delta. of the magnetic layer is not less than 5 G.mu.m and not more than 80 G.mu.m; and the value of the anisotropic magnetic field H.sub.k of the magnetic recording medium is not less than 7 kOe and not more than 20 kOe.
Abstract:
The present invention relates to a magnetic recording medium for a magnetic disk unit or the like and, more particularly, to a magnetic recording medium having its recording layer made of a magnetic alloy film with uniform magnetic characteristics. The present magnetic recording medium comprises a non-magnetic substrate, at least two sputtered layers of chromium thin film having a bow-like columnar structure which chromium thin film is laminated on the substrate, another sputtered layer of a magnetic alloy thin film laminated on the chromium thin film, and a protective layer laminated on the magnetic alloy thin film. The present invention is effective in reducing modulation of regenerative output relatively independent of a texture roughness of the substrate.
Abstract:
A magnetic recording medium having a magnetic film formed on a substrate directly or through an underlayer from an alloy containing Co as a principal component. The central line average surface roughness Ra and maximum surface roughness Rmax of the magnetic film in a direction perpendicular to the direction of magnetic recording are selected so as to fall within the ranges of 1 nm.ltoreq.Ra.ltoreq.20 nm and Rmax.ltoreq.25 Ra, respectively, and the in-plane magnetic anisotropy energy Ku of the magnetic film is selected to fall within the range of 0.ltoreq.Ku.ltoreq.8.times.10.sup.5 erg/cm.sup.3. Thus, it is possible to minimize the value of modulation which represents the degree of variation of read output on the same circumference of a magnetic disk. It is also possible to reduce the noise generated in read and write operations by forming the magnetic film so as have no crystallographic orientation.
Abstract:
A thin-film magnetic head which has a structure wherein a spiral conductor coil having a plurality of turns is disposed between first and second magnetic layers being substantially in parallel with each other, through upper and lower inorganic insulator layers, and in which a part of the outermost turn of the conductor coil is exposed on a face opposite a magnetic recording medium along with the upper and lower inorganic insulator layers, to form a magnetic gap. This head can be readily manufactured by a manufacturing method including the step of forming the outermost turn of the conductor coil on the side of the face opposite the magnetic recording medium so as to be wider than any other part of the conductor coil, and the step of thereafter machining the face opposite the magnetic recording medium so as to expose the outermost turn of the conductor coil on the face opposite the magnetic recording medium. The magnetic head of the present invention is suited to high-density recording, and is high in recording and reproducing efficiencies and also in reliability.
Abstract:
A magnetic head which uses single crystal Mn-Zn ferrite containing up to 7% by weight of SnO.sub.2 occluded therein without being allowed to separate and which has such a construction that glass having a contraction rate lower than that of ferrite is filled in the narrowed portion near the gap, the plane forming the principal magnetic circuit of the core is allowed to coincide with the {110} plane of the ferrite and an angle .theta. between the direction inside the {110} plane of the ferrite and the gap-forming plane is from 5.degree. to 40.degree. or 85.degree. to 120.degree.. The magnetic head having such a construction has a reduced modulation noise and extremely excellent write-and-read characteristics.
Abstract:
In one embodiment, a system includes a medium, a magnetic head having a write element adapted for writing data to the medium, a MAMR element and/or a TAMR element adapted for assisting recording on the medium, the MAMR element having a microwave-generating portion that receives current for operation thereof, the TAMR element having a localized heat-generating portion that receives current for operation thereof, and a read element adapted for reading data from the medium, a device adapted for measuring environmental conditions relating to the TAMR/MAMR elements and the medium, and a controller adapted for controlling operation of the magnetic head and adjusting operating parameters of the system based on the environmental conditions. The environmental conditions include temperature, a reproduced signal of the read element, and/or clearance between the TAMR/MAMR elements and the medium. The operating parameters include the clearance, amount of current injected to the TAMR/MAMR elements, and/or write current.
Abstract:
In one embodiment, a system includes a medium, a magnetic head having a write element adapted for writing data to the medium, a MAMR element and/or a TAMR element adapted for assisting recording on the medium, the MAMR element having a microwave-generating portion that receives current for operation thereof, the TAMR element having a localized heat-generating portion that receives current for operation thereof, and a read element adapted for reading data from the medium, a device adapted for measuring environmental conditions relating to the TAMR/MAMR elements and the medium, and a controller adapted for controlling operation of the magnetic head and adjusting operating parameters of the system based on the environmental conditions. The environmental conditions include temperature, a reproduced signal of the read element, and/or clearance between the TAMR/MAMR elements and the medium. The operating parameters include the clearance, amount of current injected to the TAMR/MAMR elements, and/or write current.
Abstract:
A magnetic recording and reading device includes a perpendicular magnetic recording medium, a perpendicular magnetic head having a recording head width having a heat-generating portion and a reading head, a fine adjustment portion, and a R/W-IC. The perpendicular magnetic head is configured to perform magnetic recording on the recording medium while locally heating the recording medium so as to enable a change of the coercive force of the recording medium during the recording after correcting of the position of the perpendicular magnetic head by the fine adjustment portion is completed, and to perform reading of the magnetic recording information with the aid of the reading head after correcting of the position of the perpendicular magnetic head by the fine adjustment portion is completed.
Abstract:
A magnetic recording and reading device includes a magnetic recording medium having a substrate and at least one magnetic recording layer formed above the substrate, a magnetic head enabling a data transfer rate of more than 50 MB/s and a recording density of more than 5 Gb/in2 on the magnetic recording medium, and a R/W-IC. The magnetic head includes a recording head and a reading head. The at least one magnetic recording layer contains (1) at least one metal element selected from a first group consisting of Co, Fe and Ni as a primary component, and (2) at least two elements selected from a second group consisting of Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf, Pd, Pt, Rh, Ir and Si.