Abstract:
Aspects described herein relate to configuring and selecting preamble and payload occasions for performing two-step random access procedures. Configurations on preamble occasions, payload occasions, association pattern between the occasions and synchronization signal block (SSB) beams, and the rules for selecting preamble and payload occasions for random access message transmission can be determined by the network and signaled to user equipment (UE). Based on the configurations and rules, UE can measure the link level quality and select possible preamble and payload occasions for one or more SSB beams achieving a threshold signal quality. Sets of one or more preamble occasions and one or more payload occasions can be further determined based on whether the preamble and payload occasion(s) can achieve a threshold transmission latency. The one or more preamble occasions and one or more payload occasions can be used to transmit random access messages in the two-step random access procedure.
Abstract:
A receiver is disclosed that includes a slicer having an input to receive a sequence of symbols exhibiting inter-symbol-interference (ISI). The slicer determines a state associated with each symbol based on a threshold. A feedback equalization unit is coupled to the slicer to apply equalization to the symbol fed to the slicer input based on prior detected symbol states. A Least-Mean-Square (LMS) unit cooperates with the slicer and feedback equalization unit to estimate a channel impulse response based on the equalized symbols. The LMS unit feeds the estimated channel impulse response to a Maximum-Likelihood-Sequence-Estimation (MLSE) unit to generate an estimated sequence of bits based on the estimated channel impulse response.
Abstract:
Techniques for interference cancellation in a CDMA system. In an exemplary embodiment, a channel set scrambled using a secondary scrambling code (SSC) is estimated and cancelled along with a channel set scrambled using a primary scrambling code (SSC). The estimation and cancellation of the SSC channel set may proceed in series with the estimation and cancellation of the PSC channel set. Alternatively, the estimation of the SSC channel set may proceed in parallel with the estimation of the PSC channel set, and the cancellations of the PSC and SSC channel sets may be simultaneously performed. Multiple iterations of such estimation and cancellation may be performed in a successive interference cancellation (SIC) scheme.
Abstract:
Techniques to increase the capacity of a W-CDMA wireless communications system. In an exemplary embodiment, early termination (400) of one or more transport channels on a W-CDMA wireless communications link is provided. In particular, early decoding (421, 423) is performed on slots as they are received over the air, and techniques are described for signaling (431, 432) acknowledgment messages (ACK's) for one or more transport channels correctly decoded to terminate the transmission of those transport channels. The techniques may be applied to the transmission of voice signals using the adaptive multi-rate (AMR) codec. Further exemplary embodiments describe aspects to reduce the transmission power and rate of power control commands sent over the air, as well as aspects for applying tail-biting convolutional codes (1015) in the system.
Abstract:
Techniques to increase the capacity of a W-CDMA wireless communications system. In an exemplary embodiment, early termination (400) of one or more transport channels on a W-CDMA wireless communications link is provided. In particular, early decoding (421, 423) is performed on slots as they are received over the air, and techniques are described for signaling (431, 432) acknowledgment messages (ACK's) for one or more transport channels correctly decoded to terminate the transmission of those transport channels. The techniques may be applied to the transmission of voice signals using the adaptive multi-rate (AMR) codec. Further exemplary embodiments describe aspects to reduce the transmission power and rate of power control commands sent over the air, as well as aspects for applying tail-biting convolutional codes (1015) in the system.
Abstract:
A method of data-aided timing recovery for Ethernet systems is disclosed. A first device negotiates a pseudorandom number sequence with a second device and receives a data signal from the second device. The first device samples the received data signal to recover a first training sequence. The first device also generates a second training sequence based on the pseudorandom number sequence. The second training sequence is then synchronized with the first training sequence. The synchronized second training sequence is used to align a receive clock signal of the first device with the data signal received from the second device.
Abstract:
A method of initializing a receiver is performed during an initialization mode. Timing offset values for a timing recovery circuit are repeatedly selected. For each selected timing offset value, timing recovery is performed using the timing offset value and groups of weights for a decision feedback equalizer are repeatedly selected. Each selected group of weights is used to perform blind decision feedback equalization. For each selected group of weights, a metric indicating data reception quality is computed. A timing offset value and a group of weights are chosen based on the computed metrics.
Abstract:
Techniques to increase the capacity of a W-CDMA wireless communications system. In an exemplary embodiment, early termination (400) of one or more transport channels on a W-CDMA wireless communications link is provided. In particular, early decoding (421, 423) is performed on slots as they are received over the air, and techniques are described for signaling (431, 432) acknowledgment messages (ACK's) for one or more transport channels correctly decoded to terminate the transmission of those transport channels. The techniques may be applied to the transmission of voice signals using the adaptive multi-rate (AMR) codec. Further exemplary embodiments describe aspects to reduce the transmission power and rate of power control commands sent over the air, as well as aspects for applying tail-biting convolutional codes (1015) in the system.
Abstract:
Techniques to increase the capacity of a W-CDMA wireless communications system. In an exemplary embodiment, early termination of one or more transport channels on a W-CDMA wireless communications link is provided. In particular, early decoding is performed on slots as they are received over the air, and techniques are described for signaling acknowledgment messages (ACK's) for one or more transport channels correctly decoded to terminate the transmission of those transport channels. The techniques may be applied to the transmission of voice signals using the adaptive multi-rate (AMR) codec. Further exemplary embodiments describe aspects to reduce the transmission power and rate of power control commands sent over the air, as well as aspects for applying tail-biting convolutional codes in the system.
Abstract:
A method and apparatus for reducing data congestion in Clos networks is disclosed. A congestion detector is provided at an output port of a first layer of the Clos network. A pause timer is provided at an input port of a second layer of the Clos network. The congestion detector generates a feedback message indicating a data congestion level of the output port, and the pause timer determines a pause duration based on the feedback message. For example, the pause duration may be proportional to the congestion level of the output port of the first layer. A pause signal generator may also be provided at the input port to generate a first pause signal based on the pause duration. The pause signal generator may further output the pause signal to a transmitting device to suspend a transmission of data for the pause duration.