Abstract:
A method of preparing an organic-inorganic hybrid material is described. A M(OR)x and an organically modified Si-alkoxide having a predetermined functional group are dissolved in a first solvent and a second solvent to form a first solution and a second solution, respectively. The first solution and the second solution are then mixed and heated. As a result, the M(OR)x reacts with the organically modified Si-alkoxide to form a functionalized organic-inorganic hybrid material. Furthermore, the solid content of the functionalized organic-inorganic hybrid material is increased by transferring the same into another solvent. Therefore, a thick hybrid film is fabricated by means of the transferred functionalized organic-inorganic hybrid material.
Abstract:
A method of preparing a sol-gel material is described. A metal alkoxide and an organically modified Si-alkoxide having a predetermined functional group are dissolved in a first solvent and a second solvent to form a first solution and a second solution, respectively. The first solution and the second solution are then mixed and heated. As a result, the metal alkoxide reacts with the organically modified Si-alkoxide, and a functionalized sol-gel material is formed thereby. Furthermore, the solid content of the functionalized sol-gel material is increased by transferring the same into another solvent. Therefore, a thick sol-gel film is fabricated by means of the transferred functionalized sol-gel material.
Abstract:
A composition for forming an antifogging coating is provided. The composition includes substantially 0.1 to 10 parts by weight of numerous ultrafine particles, substantially 0.1 to 10 parts by weight of a polymeric electrolyte and substantially 80 to 100 parts by weight of water. When a layer of the composition on a material surface is dried, the antifogging coating of super-hydrophilic nanostructure constructed by these ultrafine particles is formed on the material surface.
Abstract:
A method of preparing a sol-gel material is described. A M(OR)x and an organically modified Si-alkoxide having a predetermined functional group are dissolved in a first solvent and a second solvent to form a first solution and a second solution, respectively. The first solution and the second solution are then mixed and heated. As a result, the M(OR)x reacts with the organically modified Si-alkoxide to form a functionalized sol-gel material. Furthermore, the solid content of the functionalized sol-gel material is increased by transferring the same into another solvent. Therefore, a thick sol-gel film is fabricated by means of the transferred functionalized sol-gel material.
Abstract:
A variable optical attenuator and a method of manufacturing thereof are described. First, a bottom cladding is formed on a substrate. A waveguide structure having a core region and an attenuation region is subsequently formed on the bottom cladding by photolithography. A top cladding is then formed on the bottom cladding and the waveguide structure, and an electrode is next disposed thereon and is aligned above the attenuation region of the waveguide structure. Further, the waveguide structure is composed of a sol-gel material, which is obtained by mixing a solution of metal alkoxide with a solution of organically modified Si-alkoxide and heating the same.
Abstract:
A method of preparing an organic-inorganic hybrid material is described. A M(OR)x and an organically modified Si-alkoxide having a predetermined functional group are dissolved in a first solvent and a second solvent to form a first solution and a second solution, respectively. The first solution and the second solution are then mixed and heated. As a result, the M(OR)x reacts with the organically modified Si-alkoxide to form a functionalized organic-inorganic hybrid material. Furthermore, the solid content of the functionalized organic-inorganic hybrid material is increased by transferring the same into another solvent. Therefore, a thick hybrid film is fabricated by means of the transferred functionalized organic-inorganic hybrid material.
Abstract:
A variable optical attenuator and a method of manufacturing thereof are described. First, a bottom cladding is formed on a substrate. A waveguide structure having a core region and an attenuation region is subsequently formed on the bottom cladding by photolithography. A top cladding is then formed on the bottom cladding and the waveguide structure, and an electrode is next disposed thereon and is aligned above the attenuation region of the waveguide structure. Further, the waveguide structure is composed of a sol-gel material, which is obtained by mixing a solution of metal alkoxide with a solution of organically modified Si-alkoxide and heating the same.
Abstract:
The present invention provides a metal salt-containing resin composition, which comprises (a) a hydrophilic polymer which is a polymer or copolymer of an ethylene oxide-containing monomer, and (b) 0.1 to 30% of a metal salt, based on the weight of the hydrophilic polymer. The resin composition of the present invention has long lasting antistatic properties and a lower surface resistivity than the hydrophilic polymer alone.