摘要:
In a data processing system capable of concurrently executing multiple hardware threads of execution, an intermediate address translation unit in a processing unit translates an effective address for a memory access into an intermediate address. A cache memory is accessed utilizing the intermediate address. In response to a miss in cache memory, the intermediate address is translated into a real address by a real address translation unit that performs address translation for multiple hardware threads of execution. The system memory is accessed with the real address.
摘要:
A mechanism is provided in a cache for providing a read and write aware cache. The mechanism partitions a large cache into a read-often region and a write-often region. The mechanism considers read/write frequency in a non-uniform cache architecture replacement policy. A frequently written cache line is placed in one of the farther banks. A frequently read cache line is placed in one of the closer banks. The size ratio between read-often and write-often regions may be static or dynamic. The boundary between the read-often region and the write-often region may be distinct or fuzzy.
摘要:
Mechanisms are provided for processing an instruction in a processor of a data processing system. The mechanisms operate to receive, in a processor of the data processing system, an instruction, the instruction including power/performance tradeoff information associated with the instruction. The mechanisms further operate to determine power/performance tradeoff priorities or criteria, specifying whether power conservation or performance is prioritized with regard to execution of the instruction, based on the power/performance tradeoff information. Moreover, the mechanisms process the instruction in accordance with the power/performance tradeoff priorities or criteria identified based on the power/performance tradeoff information of the instruction.
摘要:
A technique for sharing a fabric to facilitate off-chip communication for on-chip units includes dynamically assigning a first unit that implements a first communication protocol to a first portion of the fabric when private fabrics are indicated for the on-chip units. The technique also includes dynamically assigning a second unit that implements a second communication protocol to a second portion of the fabric when the private fabrics are indicated for the on-chip units. In this case, the first and second units are integrated in a same chip and the first and second protocols are different. The technique further includes dynamically assigning, based on off-chip traffic requirements of the first and second units, the first unit or the second unit to the first and second portions of the fabric when the private fabrics are not indicated for the on-chip units.
摘要:
A system and method are provided for performing setup operations for receiving a different amount of data while processors are performing message passing interface (MPI) tasks. Mechanisms for adjusting the balance of processing workloads of the processors are provided so as to minimize wait periods for waiting for all of the processors to call a synchronization operation. An MPI load balancing controller maintains a history that provides a profile of the tasks with regard to their calls to synchronization operations. From this information, it can be determined which processors should have their processing loads lightened and which processors are able to handle additional processing loads without significantly negatively affecting the overall operation of the parallel execution system. As a result, setup operations may be performed while processors are performing MPI tasks to prepare for receiving different sized portions of data in a subsequent computation cycle based on the history.
摘要:
Mechanisms for providing hardware based dynamic load balancing of message passing interface (MPI) tasks are provided. Mechanisms for adjusting the balance of processing workloads of the processors executing tasks of an MPI job are provided so as to minimize wait periods for waiting for all of the processors to call a synchronization operation. Each processor has an associated hardware implemented MPI load balancing controller. The MPI load balancing controller maintains a history that provides a profile of the tasks with regard to their calls to synchronization operations. From this information, it can be determined which processors should have their processing loads lightened and which processors are able to handle additional processing loads without significantly negatively affecting the overall operation of the parallel execution system. As a result, operations may be performed to shift workloads from the slowest processor to one or more of the faster processors.
摘要:
A mechanism is provided in a virtual machine monitor for fine grained cache allocation in a shared cache. The mechanism partitions a cache tag into a most significant bit (MSB) portion and a least significant bit (LSB) portion. The MSB portion of the tags is shared among the cache lines in a set. The LSB portion of the tags is private, one per cache line. The mechanism allows software to set the MSB portion of tags in a cache to allocate sets of cache lines. The cache controller determines whether a cache line is locked based on the MSB portion of the tag.
摘要:
A method of data processing in a processor includes maintaining a usage history indicating demand usage of prefetched data retrieved into cache memory. An amount of data to prefetch by a data prefetch request is selected based upon the usage history. The data prefetch request is transmitted to a memory hierarchy to prefetch the selected amount of data into cache memory.
摘要:
A processor includes a first address translation engine, a second address translation engine, and a prefetch engine. The first address translation engine is configured to determine a first memory address of a pointer associated with a data prefetch instruction. The prefetch engine is coupled to the first translation engine and is configured to fetch content, included in a first data block (e.g., a first cache line) of a memory, at the first memory address. The second address translation engine is coupled to the prefetch engine and is configured to determine a second memory address based on the content of the memory at the first memory address. The prefetch engine is also configured to fetch (e.g., from the memory or another memory) a second data block (e.g., a second cache line) that includes data at the second memory address.
摘要:
According to method of data processing in a multiprocessor data processing system, in response to a processor touch request targeting a target granule of a cache line of data containing multiple granules, a processing unit originates on an interconnect of the multiprocessor data processing system a partial touch request that requests a copy of only the target granule for subsequent query access. In response to a combined response to the partial touch request indicating success, the combined response representing a system-wide response to the partial touch request, the processing unit receives the target granule of the target cache line and updates a coherency state of the target granule while retaining a coherency state of at least one other granule of the cache line.