Abstract:
Techniques for providing optical ion beam metrology are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for controlling beam density profile, the apparatus may include one or more camera systems to capture at least one image of an ion beam and a control system coupled to the one or more camera systems to control a beam density profile of the ion beam. The control system may further include a dose profiler to provide information to one or more ion implantation components in at least one of a feedback loop and a feedforward loop to improve dose and angle uniformity.
Abstract:
Techniques for providing optical ion beam metrology are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for controlling beam density profile, the apparatus may include one or more camera systems to capture at least one image of an ion beam and a control system coupled to the one or more camera systems to control a beam density profile of the ion beam. The control system may further include a dose profiler to provide information to one or more ion implantation components in at least one of a feedback loop and a feedforward loop to improve dose and angle uniformity.
Abstract:
Techniques for providing a multimode ion source are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation comprising an ion source that operates in multiple modes such that a first mode is an arc-discharge mode and a second mode is an RF mode.
Abstract:
The present invention provides methods and apparatus for the production of liquids and vapors that are free of, or substantially free of, dissolved or trapped gases. In one embodiment, a liquid is placed in a sealed vessel and subjected to a temperature below the freezing point of the liquid for sufficient time to substantially, if not completely, turn the liquid into a solid. Concurrent with or subsequent to the cooling of the liquid, the interior of the vessel is subjected to a vacuum so as to evacuate all or substantially all of the gaseous atmosphere. Thereafter, the vessel is heated to a temperature above the melting point of the liquid, allowing the frozen material to return to its liquid form or sublimate to form a vapor.
Abstract:
Techniques for improving extracted ion beam quality using high-transparency electrodes are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation. The apparatus may comprise an ion source for generating an ion beam, wherein the ion source comprises a faceplate with an aperture for the ion beam to travel therethrough. The apparatus may also comprise a set of extraction electrodes comprising at least a suppression electrode and a high-transparency ground electrode, wherein the set of extraction electrodes may extract the ion beam from the ion source via the faceplate, and wherein the high-transparency ground electrode may be configured to optimize gas conductance between the suppression electrode and the high-transparency ground electrode for improved extracted ion beam quality.
Abstract:
Techniques for providing a multimode ion source are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation comprising an ion source that operates in multiple modes such that a first mode is an arc-discharge mode and a second mode is an RF mode.
Abstract:
Techniques for improving extracted ion beam quality using high-transparency electrodes are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation. The apparatus may comprise an ion source for generating an ion beam, wherein the ion source comprises a faceplate with an aperture for the ion beam to travel therethrough. The apparatus may also comprise a set of extraction electrodes comprising at least a suppression electrode and a high-transparency ground electrode, wherein the set of extraction electrodes may extract the ion beam from the ion source via the faceplate, and wherein the high-transparency ground electrode may be configured to optimize gas conductance between the suppression electrode and the high-transparency ground electrode for improved extracted ion beam quality.