摘要:
Techniques for independently controlling deflection, deceleration, and focus of an ion beam are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for independently controlling deflection, deceleration, and focus of an ion beam. The apparatus may comprise an electrode configuration comprising a set of upper electrodes disposed above an ion beam and a set of lower electrodes disposed below the ion beam. The set of upper electrodes and the set of lower electrodes may be positioned symmetrically about a central ray trajectory of the ion beam. A difference in potentials between the set of upper electrodes and the set of lower electrodes may also be varied along the central ray trajectory to reflect an energy of the ion beam at each point along the central ray trajectory for independently controlling deflection, deceleration, and focus of an ion beam.
摘要:
An ion source includes an arc chamber having an extraction aperture, and a plasma sheath modulator. The plasma sheath modulator is configured to control a shape of a boundary between plasma and a plasma sheath proximate the extraction aperture. The plasma sheath modulator may include a pair of insulators positioned in the arc chamber and spaced apart by a gap positioned proximate the extraction aperture. A well focused ion beam having a high current density can be generated by the ion source. A high current density ion beam can improve the throughput of an associated process. The emittance of the ion beam can also be controlled.
摘要:
An ion implanter includes an ion source for generating an ion beam, an analyzer for separating unwanted components from the ion beam, a first beam transport device for transporting the ion beam through the analyzer at a first transport energy, a first deceleration stage positioned downstream of the analyzer for decelerating the ion beam from the first transport energy to a second transport energy, a beam filter positioned downstream of the first deceleration stage for separating neutral particles from the ion beam, a second beam transport device for transporting the ion beam through the beam filter at the second transport energy, a second deceleration stage positioned downstream of the beam filter for decelerating the ion beam from the second transport energy to a final energy, and a target site for supporting a target for ion implantation. The ion beam is delivered to the target site at the final energy. In a double deceleration mode, the second transport energy is greater than the final energy for highest current at low energy. In an enhanced drift mode, the second transport energy is equal to the final energy for highest beam purity at low energy.
摘要:
A plasma processing apparatus includes a process chamber, a platen for supporting a workpiece, a source configured to generate a plasma in the process chamber, and an insulating modifier. The insulating modifier has a gap, and a gap plane, where the gap plane is defined by portions of the insulating modifier closest to the sheath and proximate the gap. A gap angle is defined as the angle between the gap plane and a plane defined by the front surface of the workpiece. Additionally, a method of having ions strike a workpiece is disclosed, where the range of incident angles of the ions striking the workpiece includes a center angle and an angular distribution, and where the use of the insulating modifier creates a center angle that is not perpendicular to the workpiece.
摘要:
A plasma processing apparatus includes a process chamber, a platen positioned in the process chamber for supporting a workpiece, a source configured to generate a plasma in the process chamber having a plasma sheath adjacent to the front surface of the workpiece, and an insulating modifier. The insulating modifier has a gap, and a gap plane, where the gap plane is defined by portions of the insulating modifier closest to the sheath and proximate the gap. A gap angle is defined as the angle between the gap plane and a plane defined by the front surface of the workpiece. Additionally, a method of having ions strike a workpiece is disclosed, where the range of incident angles of the ions striking the workpiece includes a center angle and an angular distribution, and where the use of the insulating modifier creates a center angle that is not perpendicular to the workpiece.
摘要:
Techniques for providing a multimode ion source are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation, the apparatus including an ion source having a hot cathode and a high frequency plasma generator, wherein the ion source has multiple modes of operation.
摘要:
Techniques for providing a multimode ion source are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation, the apparatus including an ion source having a hot cathode and a high frequency plasma generator, wherein the ion source has multiple modes of operation.
摘要:
Techniques for shaping an ion beam are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for shaping an ion beam. The apparatus may comprise an entrance electrode biased at a first voltage potential, wherein an ion beam enters the entrance electrode, an exit electrode biased at a second voltage potential, wherein the ion beam exits the exit electrode, and a first suppression electrode and a second suppression electrode positioned between the entrance electrode and the exit electrode, wherein the first suppression electrode and the second suppression electrode are independently biased to variably focus the ion beam.
摘要:
A technique for providing a segmented electrostatic lens in an ion implanter is disclosed. In one particular exemplary embodiment, the technique may be realized as an electrostatic lens for use in an ion implanter. The lens may comprise an entrance electrode biased at a first voltage potential, wherein an ion beam enters the electrostatic lens through the entrance electrode. The lens may also comprise an exit electrode biased at a second voltage potential, wherein the ion beam exits the electrostatic lens through the exit electrode. The lens may further comprise a suppression electrode located between the entrance electrode and the exit electrode, the suppression electrode comprising a plurality of segments that are independently biased to manipulate an energy and a shape of the ion beam.
摘要:
A system for manipulating an ion beam having a principal axis includes an upper member having a first and a second coil generally disposed in different regions of the upper member and configured to conduct, independently of each other, a first and a second current, respectively. A lower member includes a third and a fourth coil that are generally disposed opposite to respective first and second coils and are configured to conduct, independently of each other, a third and a fourth current, respectively. A lens gap is defined between the upper and lower members, and configured to transmit the ion beam, wherein the first through fourth currents produce a 45 degree quadrupole field that exerts a rotational force on the ion beam about its principal axis.