摘要:
The present invention relates to an electrostatic discharge (ESD) clamp circuit that is used to protect other circuitry from high voltage ESD events. The ESD clamp circuit may include a field effect transistor (FET) element as a clamping element, which is triggered by using a drain-to-gate capacitance, a drain-to-gate resistance, or both of the FET element, and a resistive element as a voltage divider to divide down an ESD voltage to provide a triggering gate voltage of the FET element. In its simplest embodiment, the ESD clamp circuit includes only an FET element and a resistive element. Therefore, the single FET element ESD clamp circuit may be small compared to other ESD protection circuits. The simplicity of the ESD clamp circuit may minimize parasitic capacitances, thereby maximizing linearity of the ESD clamp circuit over a wide frequency range.
摘要:
The present invention relates to providing an enhancement-mode (e-mode) Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) with a complementary depletion-mode (d-mode) FET on a common group III-V substrate. The depletion mode FET may be another MOSFET, a MEtal-Semiconductor FET (MESFET), a High Electron Mobility Transistor (HEMT), or like FET structure. In particular, the e-mode MOSFET includes a gate structure that resides between source and drain structures on a transistor body. The gate structure includes a gate contact that is separated from the transistor body by a gate oxide. The gate oxide is an oxidized material that includes Indium and Phosphorus. The gate oxide is formed beneath the gate contact.
摘要:
The present invention relates to an electrostatic discharge (ESD) clamp circuit that is used to protect other circuitry from high voltage ESD events. The ESD clamp circuit may include a field effect transistor (FET) element as a clamping element, which is triggered by using a drain-to-gate capacitance and a drain-to-gate resistance of the FET element and a resistive element as a voltage divider to divide down an ESD voltage to provide a triggering gate voltage of the FET element. In its simplest embodiment, the ESD clamp circuit includes only an FET element, a resistive element, a source-coupled level shifting diode, and a reverse protection diode. Therefore, the ESD clamp circuit may be small compared to other ESD protection circuits. The simplicity of the ESD clamp circuit may minimize parasitic capacitances, thereby maximizing linearity of the ESD clamp circuit over a wide frequency range.
摘要:
The present invention relates to a microelectronic device having a bipolar epitaxial structure that provides at least one bipolar transistor element formed over at least one field effect transistor (FET) epitaxial structure that provides at least one FET element. The epitaxial structures are separated with at least one separation layer. Additional embodiments of the present invention may use different epitaxial layers, epitaxial sub-layers, metallization layers, isolation layers, layer materials, doping materials, isolation materials, implant materials, or any combination thereof.
摘要:
A light-emitting device includes a GaAs substrate, a light-emitting structure disposed above the substrate and capable of emitting light having a wavelength of about 1.3 microns to about 1.55 microns, and a buffer layer disposed between the substrate and the light-emitting structure. The composition of the buffer layer varies through the buffer layer such that a lattice constant of the buffer layer grades from a lattice constant approximately equal to a lattice constant of the substrate to a lattice constant approximately equal to a lattice constant of the light-emitting structure. The light-emitting device exhibits improved mechanical, electrical, thermal, and optical properties compared to similar light-emitting devices grown on InP substrates.