Abstract:
A user equipment (UE) may receive an OFDM signal having control channel elements (CCEs). The CCEs may be arranged in levels where a first level aggregates less CCEs than a second level. A processor may search for a control channel from control channel candidates that is comprised of the CCEs. A limited number of CCEs may be searched on the first level.
Abstract:
A first method (and related first apparatus) includes transmitting, in a handover request message, an indication of a first protocol version; a second method (and related second apparatus) includes receiving, in the handover request message, the indication, deciding, based on the received indication and a second protocol version, on a value of an information element included in a handover request acknowledgement message to be transmitted, the information element indicating usage of a first or second signaling scheme, and transmitting the handover request acknowledgement message including the information element; and in the first method receiving the handover request acknowledgement message including the information element; and a third method (and related third apparatus) including receiving the handover command message including the information element, and configuring according to one of the first and second signaling schemes indicated by the information element.
Abstract:
Various example embodiments are disclosed herein. According to one example embodiment, a method may include sending, from a base station, an acknowledgment/negative acknowledgment (ACK/NAK) aggregation indicator to the mobile station based on the determining, sending a plurality of data bursts to the mobile station, and receiving at least one aggregated ACK/NAK report from the mobile station.
Abstract:
In accordance with an example embodiment of the present invention, a method comprises allocating a control channel resource in a wireless relay transmission frame on a wireless relay link; generating a control signaling based on at least one of a resource allocation scheme, a status of the wireless relay link and a traffic condition of the wireless relay link; mapping the control signaling to the allocated control channel resource via at least one of a time-first mapping, a frequency-first mapping, and a multiplexing mapping; and transmitting the control signaling in the allocated control channel resource on the wireless relay link to at least one associated relay node.
Abstract:
A first method (and related first apparatus) includes transmitting, in a handover request message, an indication of a first protocol version; a second method (and related second apparatus) includes receiving, in the handover request message, the indication, deciding, based on the received indication and a second protocol version, on a value of an information element included in a handover request acknowledgement message to be transmitted, the information element indicating usage of a first or second signaling scheme, and transmitting the handover request acknowledgement message including the information element; and in the first method receiving the handover request acknowledgement message including the information element; and a third method (and related third apparatus) including receiving the handover command message including the information element, and configuring according to one of the first and second signaling schemes indicated by the information element.
Abstract:
Various example embodiments are disclosed herein. According to one example embodiment, a method may include determining, at a base station in a wireless network, an uplink channel quality for a mobile station, sending an acknowledgment/negative acknowledgment (ACK/NAK) aggregation indicator to the mobile station based on the determining, sending a plurality of data bursts to the mobile station, and receiving at least one aggregated ACK/NAK report from the mobile station.
Abstract:
A user equipment (UE) may determine channel state information (CSI) reports with each CSI report being related to a component carrier. The UE may send a subframe with CSI report(s) on a physical uplink control channel (PUCCH). When a collision occurs in the subframe having the CSI report(s) on the PUCCH a lower priority CSI report may be dropped from the transmission.
Abstract:
In accordance with an example embodiment of the present invention, a method comprises allocating a control channel resource in a wireless relay transmission frame on a wireless relay link; generating a control signaling based on at least one of a resource allocation scheme, a status of the wireless relay link and a traffic condition of the wireless relay link; mapping the control signaling to the allocated control channel resource via at least one of a time-first mapping, a frequency-first mapping, and a multiplexing mapping; and transmitting the control signaling in the allocated control channel resource on the wireless relay link to at least one associated relay node.
Abstract:
A system for determining location information for a wireless device is described. The system includes a UE, a LE and multiple LMUs. The LE sends, to the LMUs, reception instructions with characteristics of the signal transmission from the UE and each LMU receives, from the LE, the reception instructions. The UE sends a signal transmission. Each LMU receives the transmitted signal from the UE, determines locating information based at least in part of the received signal and sends the locating information to the LE. The LE receives the locating information regarding the transmitted signal and determines a location of the UE based at least in part on the received locating information. Methods, apparatus and computer readable media are also described.
Abstract:
A method, apparatus, and computer program for controlling allocation of control message fields in uplink transmission in a cellular telecommunication system are presented. Uplink control message fields are allocated to the resources of a physical uplink shared traffic channel according to an uplink transmission scheme selected for a user terminal. The control message fields are allocated so that transmission performance of the control messages is optimized for the selected uplink transmission scheme.