Abstract:
A user equipment (UE) may determine channel state information (CSI) reports with each CSI report being related to a component carrier. The UE may send a subframe with CSI report(s) on a physical uplink control channel (PUCCH). When a collision occurs in the subframe having the CSI report(s) on the PUCCH a lower priority CSI report may be dropped from the transmission.
Abstract:
A user equipment (UE) may determine channel state information (CSI) reports with each CSI report being related to a component carrier. The UE may send a subframe with CSI report(s) on a physical uplink control channel (PUCCH). When a collision occurs in the subframe having the CSI report(s) on the PUCCH a lower priority CSI report may be dropped from the transmission.
Abstract:
A user equipment (UE) is disclosed. The UE includes a receiver and a processor that receive a radio resource control (RRC) signal including uplink (UL) sounding reference signal (SRS) configuration information. The UE also receives a semi-persistent scheduling (SPS) message to activate transmission of UL SRSs The UE may then transmit UL SRSs in a time and frequency pattern based on at least the UL SRS configuration information. A UE method and an eNode-B are also disclosed.
Abstract:
A user equipment (UE) may determine channel state information (CSI) reports with each CSI report being related to a component carrier. The UE may send a subframe with CSI report(s) on a physical uplink control channel (PUCCH). When a collision occurs in the subframe having the CSI report(s) on the PUCCH a lower priority CSI report may be dropped from the transmission.
Abstract:
A system for determining location information for a wireless device is described. The system includes a UE, a LE and multiple LMUs. The LE sends, to the LMUs, reception instructions with characteristics of the signal transmission from the UE and each LMU receives, from the LE, the reception instructions. The UE sends a signal transmission. Each LMU receives the transmitted signal from the UE, determines locating information based at least in part of the received signal and sends the locating information to the LE. The LE receives the locating information regarding the transmitted signal and determines a location of the UE based at least in part on the received locating information. Methods, apparatus and computer readable media are also described.
Abstract:
A user equipment (UE) is disclosed. The UE includes a receiver and a processor that receive a radio resource control (RRC) signal including uplink (UL) sounding reference signal (SRS) configuration information. The UE also receives a semi-persistent scheduling (SPS) message to activate transmission of UL SRSs The UE may then transmit UL SRSs in a time and frequency pattern based on at least the UL SRS configuration information. A UE method and an eNode-B are also disclosed.
Abstract:
A user equipment (UE) is disclosed. The UE includes a receiver and a processor that receive a radio resource control (RRC) signal including uplink (UL) sounding reference signal (SRS) configuration information. The UE also receives a semi-persistent scheduling (SPS) message to activate transmission of UL SRSs The UE may then transmit UL SRSs in a time and frequency pattern based on at least the UL SRS configuration information. A UE method and an eNode-B are also disclosed.
Abstract:
A user equipment (UE) is disclosed. The UE includes a receiver and a processor that receive a radio resource control (RRC) signal including uplink (UL) sounding reference signal (SRS) configuration information. The UE also receives a semi-persistent scheduling (SPS) message to activate transmission of UL SRSs The UE may then transmit UL SRSs in a time and frequency pattern based on at least the UL SRS configuration information. A UE method and an eNode-B are also disclosed.
Abstract:
A user equipment (UE) is disclosed. The UE includes a receiver and a processor that receive a radio resource control (RRC) signal including uplink (UL) sounding reference signal (SRS) configuration information. The UE also receives a semi-persistent scheduling (SPS) message to activate transmission of UL SRSs The UE may then transmit UL SRSs in a time and frequency pattern based on at least the UL SRS configuration information. A UE method and an eNode-B are also disclosed.
Abstract:
A user equipment (UE) is disclosed. The UE includes a receiver and a processor that receive a radio resource control (RRC) signal including uplink (UL) sounding reference signal (SRS) configuration information. The UE also receives a semi-persistent scheduling (SPS) message to activate transmission of UL SRSs The UE may then transmit UL SRSs in a time and frequency pattern based on at least the UL SRS configuration information. A UE method and an eNode-B are also disclosed.