Abstract:
Phosphate-binding polymers are provided for removing phosphate from the gastrointestinal tract. The polymers are orally administered, and are useful for the treatment of hyperphosphatemia.
Abstract:
Disclosed are polymers comprising one or more phenyl boronate ester, boronamide or boronate thioester groups. The phenyl boronate ester, boronamide and boronate thioester groups are represented by one of the following structural formulas: Ar in Structural Formulas (I) and (II) is substituted or unsubstituted; and each Z is —O—, —NH— or —S— and is independently selected. Pharmaceutically acceptable salts of the polymer are also included. The aryl boronate ester, boronamide or boronate thioester can be cleaved to release the corresponding aryl boronic acid.Also disclosed are pharmaceutical compositions comprising the polymers of the present invention and a pharmaceutically acceptable carrier or diluent; and methods of treating a subject for obesity with the polymers of the present invention.
Abstract:
Disclosed is a phenyl boronic acid compound represented by Structural Formula (I): Ar is a substituted or unsubstituted aryl group. Z and Z′ are independently —O—. —NH— or —S—. X is an electron withdrawing group. R is a substituted or unsubstituted straight chained hydrocarbyl group optionally comprising one or more amine, ammonium, ether, thioether or phenylene linking groups and Y is —H, an amine, —[NH—(CH2)q]r—NH2, halogen, —CF3, thiol ammonium, alcohol, —COOH, —SO3H, —OSO3H or phosphonium group covalently bonded to the terminal position of R. Each —NH— in —[NH—(CH2)q]r—NH2 is optionally N-alkylated or N,N-dialkylated and —NH2 in —[NH—(CH2)q]r—NH2 is optionally N-alkylated, N,N-dialkylated or N,N,N-trialkylated. q is an integer from 2 to about 10 and r is an integer from 1 to about 5. R1 and R1′ are independently —H, an aliphatic group, a substituted aliphatic group, an aryl group or a substituted aryl group, or, taken together, are a C2-C5 substituted or unsubstituted alkylene group optionally comprising an amine linking group [—N+(R1a)—]. Each R1 is Structural Formula (I) is preferably —H. R1a is —H, alkyl, substituted alkyl, phenyl or substituted phenyl. Also disclosed is a method of treating obesity in a subject by administering an effective amount of a compound represented by Structural Formula (I) and a pharmaceutical composition comprising the compound and a pharmaceutically acceptable carrier or diluent.
Abstract:
The invention relates to a method for removing bile salts from a patient in need thereof and compositions useful in the method. The method comprises administering to the patient a therapeutically effective amount of a salt of an alkylated and crosslinked polymer. The alkylated and crosslinked polymer salt comprises the reaction product of crosslinked polymers, or salts and copolymers thereof having amine containing repeat units, with at least one aliphatic alkylating agent.
Abstract:
The invention features a method for treating obesity in a patient by administering to the patient a polymer that has been substituted with one or more groups that inhibit lipases, which are enzymes responsible for the hydrolysis of fat. The invention further relates to the polymers employed in the methods described herein as well as novel intermediates and methods for preparing the polymers.
Abstract:
The present invention relates to a method for treating obesity, a method for reducing the absorption of dietary fat, and a method for treating hypertriglyceridemia in a patient and to particular polymers for use in the methods or in a manufacture of a medicament. The methods comprise the step of orally administering to a mammal, such as a human, a therapeutically effective amount of one or more fat-binding polymers. The administration of the fat-binding polymer of the invention facilitates the removal of fat from the body prior to digestion, with minimal side effects and low toxicity. In a preferred embodiment, the one or more fat-binding polymers are administered in combination with one or more lipase inhibitors, for example, lipstatin and tetrahydrolipstatin.
Abstract:
The present invention relates to a method for treating obesity, a method for reducing the absorption of dietary fat, and a method for treating hypertriglyceridemia in a patient and to particular polymers for use in the methods or in a manufacture of a medicament. The methods comprise the step of orally administering to a mammal, such as a human, a therapeutically effective amount of one or more fat-binding polymers. The administration of the fat-binding polymer of the invention facilitates the removal of fat from the body prior to digestion, with minimal side effects and low toxicity. In a preferred embodiment, the one or more fat-binding polymers are administered in combination with one or more lipase inibitors, for example, lipstatin and tetrahydrolipstatin.
Abstract:
The invention relates to a method for removing bile salts from a patient in need thereof and compositions use full in the method. The method comprises administering to the patient a therapeutically effective amount of a salt of an alkylated and crosslinked polymer. The alkylated and crosslinked polymer salt comprises the reaction product of polymers, or salts and copolymers thereof having amine containing repeat units, with at least one aliphatic alkylating agent and a crosslinking agent.
Abstract:
Phosphate-binding polymers are provided for removing phosphate from the gastrointestinal tract. The polymers are orally administered, and are useful for the treatment of hyperphosphatemia.
Abstract:
The invention relates to a method for removing bile salts from a patient in need thereof and compositions useful in the method. The method comprises administering to the patient a therapeutically effective amount of an alkylated and crosslinked polymer. The alkylated and crosslinked polymer comprises the reaction product of polymers, or salts and copolymers thereof having amine containing repeat units, with at least one aliphatic alkylating agent and a crosslinking agent.