Abstract:
A method of forming a capacitor includes depositing a dielectric metal oxide layer of a first phase to a thickness no greater than 75 Angstroms over an inner conductive capacitor electrode material. The first phase dielectric metal oxide layer has a k of at least 15. Conductive RuO2 is deposited over and into physical contact with the dielectric metal oxide layer. Then, the RuO2 and the dielectric metal oxide layer are annealed at a temperature below 500° C. The RuO2 in physical contact with the dielectric metal oxide during the annealing facilitates a change of the dielectric metal oxide layer from the first phase to a second crystalline phase having a higher k than the first phase. The annealed dielectric metal oxide layer is incorporated into a capacitor dielectric region of a capacitor construction. Other implementations are disclosed.
Abstract:
Methods of forming an oxide are disclosed and include contacting a ruthenium-containing material with a tantalum-containing precursor and contacting the ruthenium-containing material with a vapor that includes water and optionally molecular hydrogen (H2). Articles including a first crystalline tantalum pentoxide and a second crystalline tantalum pentoxide on at least a portion of the first crystalline tantalum pentoxide, wherein the first tantalum pentoxide has a crystallographic orientation that is different than the crystallographic orientation of the second crystalline tantalum pentoxide, are also disclosed.
Abstract:
Strontium ruthenium oxide provides an effective interface between a ruthenium conductor and a strontium titanium oxide dielectric. Formation of the strontium ruthenium oxide includes the use of atomic layer deposition to form strontium oxide and subsequent annealing of the strontium oxide to form the strontium ruthenium oxide. A first atomic layer deposition of strontium oxide is preformed using water as an oxygen source, followed by a subsequent atomic layer deposition of strontium oxide using ozone as an oxygen source.
Abstract:
Methods of forming an insulative element are described, including forming a first metal oxide material having a first dielectric constant, forming a second metal oxide material having a second dielectric constant different from the first, and heating at least portions of the structure to crystallize at least a portion of at least one of the first dielectric material and the second dielectric material. Methods of forming a capacitor are described, including forming a first electrode, forming a dielectric material with a first oxide and a second oxide over the first electrode, and forming a second electrode over the dielectric material. Structures including dielectric materials are also described.
Abstract:
Some embodiments include methods of forming rutile-type titanium oxide. A monolayer of titanium nitride may be formed. The monolayer of titanium nitride may then be oxidized at a temperature less than or equal to about 550° C. to convert it into a monolayer of rutile-type titanium oxide. Some embodiments include methods of forming capacitors that have rutile-type titanium oxide dielectric, and that have at least one electrode comprising titanium nitride. Some embodiments include thermally conductive stacks that contain titanium nitride and rutile-type titanium oxide, and some embodiments include methods of forming such stacks.
Abstract:
A method for using a metal bilayer is disclosed. First, a bottom electrode is provided. Second, a dielectric layer which is disposed on and is in direct contact with the lower electrode is provided. Then, a metal bilayer which serves as a top electrode in a capacitor is provided. The metal bilayer is disposed on and is in direct contact with the dielectric layer. The metal bilayer consists of a noble metal in direct contact with the dielectric layer and a metal nitride in direct contact with the noble metal.
Abstract:
Some embodiments include methods of forming capacitors. A metal oxide mixture may be formed over a first capacitor electrode. The metal oxide mixture may have a continuous concentration gradient of a second component relative to a first component. The continuous concentration gradient may correspond to a decreasing concentration of the second component as a distance from the first capacitor electrode increases. The first component may be selected from the group consisting of zirconium oxide, hafnium oxide and mixtures thereof; and the second component may be selected from the group consisting of niobium oxide, titanium oxide, strontium oxide and mixtures thereof. A second capacitor electrode may be formed over the first capacitor electrode. Some embodiments include capacitors that contain at least one metal oxide mixture having a continuous concentration gradient of the above-described second component relative to the above-described first component.
Abstract:
A method for forming a stacking structure, including forming a ruthenium oxide layer over a substrate; forming a praseodymium oxide layer over the ruthenium oxide layer; and forming a titanium oxide layer over the praseodymium oxide layer; wherein the titanium oxide layer has a rutile phase with the existence of the praseodymium oxide layer underneath. The oxide layers are deposited by a plurality of atomic layer deposition cycles using ruthenium precursor, praseodymium precursor, titanium precursor, and ozone.