摘要:
The present invention relates to a method for cutting rigid foams, especially slabstock P(M)I foams. A method is provided here, by means of which it is possible to cut these rigid foams even in relatively high layer thicknesses of, for example, more than 3 mm, without material loss, which is produced in relevant amounts, for example, in the course of sawing as a result of the sawdust formed.
摘要:
Process for monitoring the polymerization of ethylene or ethylene and comonomers in the presence of free-radical polymerization initiator at pressures in the range of from 160 MPa to 350 MPa and temperatures in the range of from 100° C. to 350° C. in a tubular reactor with one or more reaction zones, which is equipped with cooling jackets for cooling the tubular reactor with a cooling medium, comprising the steps of a) measuring as process parameters the temperature profile and the pressure of the reaction medium and the flow and temperature profile of the cooling medium along the reactor, b) monitoring the feeds of ethylene, if present comonomer, free-radical polymerization initiator and chain-transfer agent to all reaction zones, c) calculating, based on the measured process parameters and on a model for the polymerization process, concentrations for free-radical polymerization initiator, chain-transfer agent, ethylene and, if present, comonomers at at least so many positions along the reactor, that at least one calculation is carried out all 10 s for a volume unit flowing through the reactor, d) calculating, based on the measured process parameters and the calculated concentrations, the cooling power, the generation of heat, and the concentration of radicals, e) calculating, based on the calculated data of the cooling power, of the generation of heat, and of the concentration of radicals, the potential of a thermal runaway of the reaction mixture at the positions along the reactor which have the highest temperatures, and f) outputting an alarm signal if the calculated value for the potential of a thermal runaway exceeds a predefined value and process for polymerizing ethylene or ethylene and comonomers comprising such a monitoring process.
摘要:
Process for the preparation of ethylene homopolymers or copolymers in the presence of free-radical polymerization initiator at from 100° C. to 350° C. and pressures in the range of from 160 MPa to 350 MPa in a high-pressure polymerization unit comprising a high-pressure reactor with one or more reaction zones, to each of which free-radical polymerization initiator is fed, which is controlled by a model based predictive controller carrying out the steps a) feeding target values for density and melt flow rate (MFR) of the ethylene homopolymer to be prepared as setpoint ranges to the controller if an ethylene homopolymers is prepared or feeding target values for density, MFR and copolymer composition of the ethylene copolymer of to be prepared as set-point ranges to the controller if an ethylene copolymer is prepared; b) measuring data in the high-pressure polymerization unit and calculating by means of a model based on these data a value for the density of the ethylene homopolymer or copolymer currently prepared in the high-pressure reactor; c) independently of step b), measuring data in the high-pressure polymerization unit and calculating by means of a model based on these data a value for the MFR of the ethylene homopolymer or copolymer currently prepared in the high-pressure reactor; d) if an ethylene copolymer is prepared, independently of steps b) and c), measuring data in the high-pressure polymerization unit and calculating by means of a model based on these data a value for the copolymer composition of the ethylene copolymer currently prepared in the high-pressure reactor, e) feeding the calculated values for the density, for the MFR and, if an ethylene copolymer is prepared, for the copolymer composition as controlled variables to the controller; and f) measuring data in the high-pressure polymerization unit and calculating by means of the controller based on these measured data, the setpoint ranges fed in step a) and the values calculated in steps b), c) and d) as outputs setpoint ranges for manipulated variables of the high-pressure polymerization unit including setpoint ranges for feeding the free-radical polymerization initiator, wherein the calculation of the setpoint ranges for feeding the free-radical polymerization initiator is repeated at least every 3 minutes, method of controlling a process for the preparation of ethylene homopolymers or copolymers in a high-pressure reactor and method for transitioning from one grade to another in a process for the preparation of ethylene homopolymers or copolymers in a high-pressure reactor.
摘要:
The invention relates to a plasma applicator (1) for applying a non-thermal plasma to a surface (2), particularly for the plasma treatment of living tissue and especially for the plasma treatment of wounds (2), comprising a sealing cover (4) for covering a portion of the surface thereby enclosing a cavity between the sealing cover (4) and the surface (2), wherein the non-thermal plasma is provided in the cavity so that the non-thermal plasma contacts the surface (2). Further, the invention relates to a corresponding method.
摘要:
Glass particles colored with at least one colorant, where the colored glass particles are glass platelets with an average diameter of 1 to 500 μm and the colorants comprise or consist of at least one of metallic nanoparticles and metal oxides. The glass platelets are planar and the colorants are present in a concentration from 1% to 55% by weight, based on the total weight of the colored glass platelets. The disclosure further relates to a method for producing the colored glass particles and to the use thereof.
摘要:
The invention relates to a non-thermal plasma for treatment of a surface, particularly for the treatment of a wound (1), wherein the plasma comprises a partially ionized carrier gas and at least one additive, which preferably has a sterilizing effect on the treated surface and/or improves the healing of the wound (1). Further, the invention relates to a corresponding apparatus and method.
摘要:
Pearlescent pigments including a largely transparent platelet-shaped substrate having a density ρS and at least one optically active coating having a density ρM, the substrate having an average size d50 of 3 to 8 μm and an average height hS of 40 to 110 nm. The disclosure further relates to a method for producing the pearlescent pigments, and also to the use thereof.
摘要:
The invention relates to a pigment composition based on P.Y. 191 of the formula (1) containing 0.05 to 30 mol %, based on the sum of P.Y. 191 and a further yellow colorant, of at least one further yellow colorant of the formula (2) and/or of C.I. Pigment Yellow 100 in which R1, R2, R3 and R4 are each independently hydrogen, halogen, —CH3, —NO2, or NH—R6 where R6 is C1-C4-alkyl; R5 is methyl or carboxyl, and where the compound of the formula (2) is not C.I. Pigment Yellow 191.
摘要:
The invention relates to coated pearlescent pigments, whereby the coating covers the pearlescent pigments and comprises uncured, however, chemically cross-linkable and/or oligomeric and/or polymeric binding agents that can be cross-linked by heat, IR radiation, UV radiation and/or electron rays. The invention also relates to a method for producing the coated pearlescent pigments and to the use thereof. The invention additionally relates to a coating composition and to a coated article.
摘要:
The invention relates to pearlescent pigments with a platelet-shaped substrate comprising metal oxide and having a first and a second protective layer, said metal oxide having a refractive index of greater than 1.8, there being on the platelet-shaped substrate a first protective layer comprising cerium oxide and/or cerium hydroxide and a second protective layer of SiO2, applied to which is an organic chemical aftercoat comprising at least one silane having at least one functional bond group and at least one silane without a functional bond group, it being possible for metal oxide layers other than cerium oxide and SiO2 to be disposed between the first and the second protective layer. The invention further relates to a process for preparing these pigments, and to the use thereof.