Abstract:
Provided are methods of immunizing a viewport of a medical device against fogging before or during a medical procedure, and related apparatuses and devices. The methods comprise applying plasma to the viewport prior to use, thereby rendering a surface of the viewport highly hydrophilic. The methods eliminate or at least significantly reduce blur due to fogging.
Abstract:
A system that does conversion from regular hot plasma produced by ESU to cold plasma which is thermally harmless for the tissue. The system is comprised of Conversion Unit and Cold Plasma Probe. Output signal for ESU connects to CU along with Helium flow. The CU converts signal from ESU and send it to the output connector along with helium flow. Cold Plasma Probe is connected directly to the CU output. At the end of the CPP probe cold plasma is produced.
Abstract:
The object of the present invention is to provide a method for producing a micro-plasma with biocompatibility. The produced micro-plasma is a low temperature, adjustable micro-plasma with low energy consumption. The method provides a device comprising a first gas storage unit, a second gas storage unit, a unit for producing the micro-plasma, and a power supply unit.
Abstract:
Disclosed is a device having an oscillator and high voltage transformer connected to a glass-like tube filled with an inert gas or a mixture of inert gasses. The tube is located at the end of a wand having a handle. The output of the transformer is an RF high voltage signal. The output of the transformer is fed to the tube through a high voltage wire, where the signal excites the gas to produce a plasma-like beam. The tube is then applied to a patient's skin to aid in healing and the relief of additional ailments. The field generated by the tube interacts with the cells in the patient to increase transmembrane potential, stimulate ATP production, and inject negative ions and ozone into the surface of the user's skin to combat infection and disease.
Abstract:
Provided herein is an integrated target structure for generating charged particles. The integrated target structure according to an embodiment of the present disclosure includes a target layer emitting charged particles depending on an irradiation of a laser beam, an optical component controlling at least one of the laser beam and the charged particles, and a support body supporting the target layer and the optical component using one structure.
Abstract:
A plasma-generation device for applying plasma to a human body, having a reservoir containing a gas, a plasma zone in fluid connection with the reservoir, and means for generating a plasma by electrical discharge in the plasma zone. The gas has a composition of 92% to 99.9% Argon and 0.1% to 8% Krypton; or 95% to 99.5% Argon and 0.5% to 5% Hydrogen; or 92% to 99.5% Argon and 0.5% to 8% Nitrous Oxide.
Abstract:
An attachment for an electrosurgical hand piece. The attachment comprises a probe assembly having an elongated tube having a proximal end and a distal end, and an electrode. The electrode has at a proximal end a conductive connector, which has a proximal end, a distal end and a channel extending through the conductive connector. The conductive connector may be comprised of a nickel plated brass alloy. The electrode further has a conductive wire extending from said distal end of said conductive connector, said conductive wire being connected to said distal end of said conductive connector adjacent to said channel in said conductive connector. The conductive wire extends substantially along the length of the elongated tube and may or may not extend out of the end of the tube.
Abstract:
Exemplary systems and methods of delivering DNA vaccines are disclosed herein. An exemplary methodology of delivering DNA vaccines includes providing a plasma generator for applying plasma to a treatment area for a sufficient period of time to open one or more pores. Applying a topical DNA vaccine to the treatment area and waiting for a period of time to allow the DNA vaccine to travel through the one or more pores. The exemplary methodology further includes applying plasma to the treatment area at a setting sufficient to cause intracellular uptake of the DNA vaccine.
Abstract:
Plasma jet assemblies are provided. A plasma jet assembly may include: a tube through which a gas flows; a power source providing a high frequency power exciting the gas in plasma state; a power electrode applying the high frequency power to the gas; and a plasma control unit removing arc discharge of a plasma gas generated in the tube by the high frequency power applied to the power electrode.
Abstract:
Disclosed is a device and method for contacting a biological substrate. A non-thermal plasma device delivers a non-thermal plasma discharge using a dielectric conduit, an igniter electrode and a RF electrode. The dielectric conduit fluidicly communicates a gas therethrough and an igniter electrode ionizes at least a portion of the gas. The RF electrode, disposed circumferentially proximate to the exterior of the dielectric conduit, generates non-thermal plasma from the ionized gas. The non-thermal plasma is discharged from the dielectric conduit and contacts a biological substrate. The non-thermal plasma discharge may be suitable for tissue bonding and sterilization applications.