Abstract:
A semiconductor device characterized by comprising a first insulating film formed on the semiconductor substrate, a first wiring or mark formed on the first insulating film, an electrically isolated pattern formed under the first insulating film and below the first wiring or mark, a hole formed in the first insulating film to connect the first wiring or mark and the electrically isolated pattern, and a second insulating film for covering the first wiring or mark.
Abstract:
A method for fabricating a dynamic random access memory comprises the steps of forming a diffusion region in a semiconductor substrate, providing an insulation layer on the semiconductor substrate, forming a contact hole in the insulation layer to expose the diffusion region at the contact hole, depositing a semiconductor layer on the insulation layer in the amorphous state such that the semiconductor layer establishes an intimate contact with the exposed diffusion region via the contact hole, patterning the semiconductor layer to form a capacitor electrode, depositing a dielectric film on the capacitor electrode such that said dielectric film covers the capacitor electrode; and depositing a semiconductor material to form an opposing electrode such that the opposing electrode buries the capacitor electrode underneath while establishing an intimate contact with the dielectric film that covers the capacitor electrode.
Abstract:
Micro-structures comprising at least a structural member, which is liable to be bent under an external force and formed so as to leave a space between the member and another member liable to be bent and/or other rigid component, are successfully treated using a treating liquid, without suffering permanent deformation resulting from the use of the treating liquid, by removing the micro-structures from the liquid to an environment having a pressure less than the atmospheric pressure; or displacing the micro-structures from the treating liquid to another treating liquid having a smaller surface tension than that of the former liquid, and then removing the micro-structures from the latter liquid; or drying the micro-structures removed from the treating liquid by exposing the same to vapor of a liquid having a smaller surface tension than that of the treating liquid; or removing the micro-structures from the treating liquid to the atmosphere, and drying them using an energy beam of high intensity or an ultrasonic wave. Micro-structures are also disclosed which comprise at least a member liable to be bent but are capable of avoiding permanent deformation of the member resulting from a treatment using a liquid.
Abstract:
A nonvolatile semiconductor memory device includes a plurality of memory cells holding memory cell information, a plurality of bit lines connected to the plurality of memory cells, the plurality of bit lines including a first bit line conected to a selected one of the plurality of memory cells and a plurality of second bit lines connected to non-selected memory cells, a plurality of reference cells supplying different reference currents respectively, and a read-out circuit, wherein, when reading the memory cell information, the read-out circuit is coupled to the first bit line connected to the selected memory cell and coupled to one of the plurality of reference cells through one of the plurality of second bit lines connected to the non-selected memory cells.
Abstract:
A memory device includes plural banks (BNKA, BNKB, BNKC, and BNKD), and each of the banks includes a plural memory cells storing data and plural bit lines reading data from the plural memory cells. Bit line lengths of all of the plural banks are equal.
Abstract:
A memory device has a data line (DATA-BUS) for connection to a memory cell, a reference line (Reference-BUS) for reference, a precharge circuit (101), a load circuit (102), and an amplifier circuit (103). The precharge circuit is connected to the data line and the reference line and configured to precharge the data line and the reference line. The load circuit is connected to the data line and the reference line and configured to apply a first constant current to the data line and apply a second constant current which is smaller than the first constant current to the reference line. The amplification circuit is connected to the data line and the reference line and configured to amplify a differential voltage between the data line and the reference line.
Abstract:
An intermediary die 10 is provided with inner circumferential helical teeth r, a lower punch 7 is provided with outer circumferential helical teeth p, and an upper punch 8 is provided with outer circumferential helical teeth q, respectively. When the intermediary die 10, the lower punch 7 and the upper punch 8 all engage to manufacture helical gears by compacting powdered materials, lateral displacement (phase displacement) of a phase guide 11 which is adapted to engage with the upper outer punch 8a, is forcibly corrected to allow it to return to its original position, from the time when the load of the upper outer punch 8a is reduced to when the intermediary die 10 is released. There is also provided an escape surface on the pressing surface of the upper outer punch 8a. The escape surface is designed to reduce the slide contact force developed on a compacted product Ga when the upper outer punch 8a and the compacted product Ga are respectively displaced in a lateral direction.
Abstract:
On one hand, a row address is provided via a buffer gate to a row address register 11, and its output is provided via a complementary signal generation circuit 15 and a predecoder 16 to a word decoder 17A. On the other hand, in response to an issuance of-an activate command a control signal AS1 is provided via a delay circuit 14 to the clock input CK of the row address register 11 as a strobe signal AS2, and AS2 is provided, to reduce timing margin, via a delay circuit 20A to the strobe signal input of the predecoder 16 as a strobe signal S2. S2 is provided via a delay circuit 20B to the strobe signal input of the word decoder 17A having RS flip-flops 2301 to 2332 or latch circuits. Each of the latch circuits consists of a NOR gate having a set input and a reset input and another NOR gate having an input coupled to receive the output of the former NOR gate and another set input to receive a multiple selection signal which is common for all the latch circuits in word decoders.
Abstract:
A photomask has a plurality of transparent regions defined in an opaque region and classified into first and second groups. Each of the transparent regions belonging to one of the first and second groups is provided with a phase shifter, so that the phase of light transmitted through the transparent region belonging to the first group becomes different from the phase of light transmitted through the transparent region belonging to the second group. The photomask includes: a pair of first transparent regions belonging to the first group and including linear portions disposed in parallel, a virtual straight line interconnecting one ends of the first transparent regions intersecting at a right angle with the extension direction of the linear portions; and a second transparent region belonging to the second group and disposed at the center between, and in parallel to, the linear portions of the pair of first transparent regions, the second transparent region including a linear thickportion and a linear thin portion, the linear thin portion being disposed in an area between the pair of first transparent regions and continuously coupled to the linear thick portion, and a connection portion between the thick and thin portions being indented from the virtual straight line toward the area between the pair of first transparent regions.
Abstract:
A micro-structure including at least a first bendable member having first and second ends and being supported at the first end only, and either being spaced from a rigid component, or being spaced from a second bendable member also supported only at a first end thereof. The first member has a length L from the first end to the second end specified by one of the following equations: (a) for the first member adjacent to the rigid component: L