Abstract:
A signal level adjustment apparatus includes a detector configured to detect both a plurality of peak levels of an input signal having a sinusoidal waveform or a substantially sinusoidal waveform and a plurality of bottom levels of the input signal; and a level adjuster configured to adjust, in a predetermined zone of the input signal, levels of the input signal based on the plurality of peak levels and the plurality of bottom levels detected by the detector.
Abstract:
A semiconductor laser driver and an image forming apparatus incorporating the semiconductor laser driver. The semiconductor laser driver includes a light source including a plurality of laser-beam source units disposed in a sub-scanning direction that serves as a group direction, the laser-beam source units having a plurality of groups arranged in a main scanning direction, each of the laser-beam source units emitting a laser beam of a light quantity dependent upon a driving current, a shading corrector to correct, according to at least one shading correction value, the driving current given to the laser-beam source units for each of the groups, and a light quantity adjuster to adjust the driving current according to a light-quantity adjustment value for the laser-beam source units. The image forming apparatus includes a semiconductor laser drive circuit, and the semiconductor laser driver that serves as the semiconductor laser driver.
Abstract:
A phase detector includes a crossing-point phase detection circuit to compare signals levels of pairs of sensor signals and output crossing-point phase detection signals indicating phases of crossing points between the pairs of the sensor signals, each having a signal level corresponding to a rotational position of a rotor of a motor having coils, a crossing-point level detection circuit to output crossing-point level signals indicating crossing-point levels detected, a signal selection circuit to select one of the sensor signals as a selection signal, a phase detection circuit to detect that a signal level of the selection signal has reached a threshold level, and output a phase data signal indicating a phase of the rotor corresponding to the threshold level, and an in-phase level adjustment circuit to adjust and output in-phase levels of the sensor signals to approach each of the crossing-point levels to a predetermined signal level.
Abstract:
A semiconductor laser driving device that drives a semiconductor laser with a driving current output from a driving current output terminal is disclosed. The semiconductor laser driving device includes a driving current monitoring terminal configured to output a driving current monitoring current having a value of 1/α of the driving current; a current-voltage conversion resistor connected to the driving current monitoring terminal and configured to convert the driving current monitoring current having the value of 1/α of the driving current into a corresponding driving current monitoring voltage; and a detector configured to generate a reference voltage and detect whether the corresponding driving current monitoring voltage has reached the reference voltage.
Abstract:
A disclosed voltage comparison circuit for detecting a voltage difference of two input signals includes one or more differential amplifier circuits, each of which has a differential pair of first and second input transistors each having an electrode to which a corresponding one of the input signals is input, a constant current circuit configured to generate constant current according to a control signal and supply the constant current to the first and second input transistors, and a first resistor connected between the constant current circuit and the first input transistor; and a current control circuit configured to control a value of the first constant current. The current control circuit controls the value so that a voltage difference between both ends of the first resistor becomes equal to a predetermined value.
Abstract:
A trimming circuit is disclosed. The trimming circuit includes a first trimming circuit having resistors and fuses, and a second trimming circuit having a resistor, an NMOS transistor, and a control circuit. The control circuit includes an inverter circuit and a series circuit in which a resistor and fuses are connected in series. The first trimming circuit is connected with a reference resistor in series and the second trimming circuit is connected with the reference resistor in parallel.
Abstract:
A light deflection device includes a reflector; a drive beam supporting the reflector such that the reflector is movable; a supporting section supporting the drive beam; and a piezoelectric drive circuit disposed on the drive beam. The light deflection device further includes circuitry configured to output a first drive-voltage waveform and a second drive-voltage waveform to the piezoelectric drive circuit. The first drive-voltage waveform has a period of a positive slope within one cycle, the period of the positive slope includes a period of a first slope and a period of a second slope different from the first slope. The second drive-voltage waveform has a period of a negative slope within one cycle, and the period of the negative slope includes a period of a third slope and a period of a fourth slope different from the third slope.
Abstract:
A phase detecting device includes a signal level detector configured to detect a first level of a signal according to a phase of a rotor of a motor, a level memory configured to store the first level of the signal preliminarily detected at each phase of the rotor as a second level of the signal at the phase of the rotor, and a phase detector configured to detect the phase of the rotor based on the second level of the signal inputted from the signal level detector.
Abstract:
A phase detecting device includes a signal level detector configured to detect a first level of a signal according to a phase of a rotor of a motor, a level memory configured to store the first level of the signal preliminarily detected at each phase of the rotor as a second level of the signal at the phase of the rotor, and a phase detector configured to detect the phase of the rotor based on the second level of the signal inputted from the signal level detector.
Abstract:
A laser diode drive circuit includes a power supply circuit connected to an anode of a laser diode to supply a variable voltage to the laser diode, and a drive current control circuit connected to a cathode of the laser diode to control a current of the laser diode. The power supply circuit generates a start-up voltage which is equal to the sum of the maximum drive voltage that is larger than the drive voltage and a predetermined first reference voltage, acquires a cathode voltage of the laser diode while the start-up voltage is generated, generates a voltage by lowering from the start-up voltage so as to diminish the difference between the acquired cathode voltage and the first reference voltage, and the first reference voltage is the minimum cathode voltage necessary to supply a predetermined current to the laser diode by the drive current control circuit.