Abstract:
A heat pump, and in particular a heat pump for heating a hot water supply is provided with an improved defrost mode. The defrost mode is actuated to remove frost from an outdoor evaporator that may accumulate during cold weather operation. An algorithm for operation of the defrost mode is developed experimentally by seeking to maximize the heat transfer provided by the refrigerant. A heating system condition is experimentally related to the heat transfer capacity. One then maximizes the average heat transfer capacity to determine the optimum initiation point for the defrost mode. Further, protections are included into the defrost mode. When the heat pump is utilized to heat hot water, methods are provided to prevent the water that remains in the heat exchanger from becoming unduly heated. In one method, the water pump may be periodically operated to move the water. In a second method, a control ensures the discharge pressure of the refrigerant leaving the compressor is reduced, and that the water pump is not stopped until that reduced temperature falls below a predetermined maximum. The temperature reduction is achieved through a dual control loop wherein a temperature that is too high results in a new desired discharge pressure. The control achieves the new desired pressure by controlling the expansion device. In another protection feature, as a control determines that the defrost mode is nearing its end, an evaporator fan is run to remove melted water from the evaporator coils, and also to ensure the refrigerant leaving the evaporator does not reach unduly high pressure or temperatures.
Abstract:
An energy-efficient heat pump water heating system determines whether to energize a heat pump by interpreting readings from one or temperature sensors based on two thresholds. The heat pump is energized if the detected temperature falls below a first threshold and de-energized when the detected temperature rises above a second threshold. The thresholds may correspond to outputs of two or more sensors. Using multiple temperature thresholds improves the temperature sensing capabilities of the system, thereby improving energy efficiency by matching heat pump operation with hot water demand more closely than previously known systems.
Abstract:
An accumulator acts as a buffer to prevent over-pressurization of the vapor compression system while inactive. By determining the maximum storage temperature and the maximum storage pressure a system will be subject to when inactive, a density of the refrigerant for the overall system can be calculated. Dividing the density by the mass of the refrigerant determines an optimal overall system volume. The volume of the components is subtracted from the overall system volume to calculate the optimal accumulator volume. The optimal accumulator volume is used to size the accumulator so that the accumulator has enough volume to prevent over-pressurization of the system when inactive.
Abstract:
Refrigerant is circulated through a vapor compression system including a compressor, a gas cooler, an expansion device, and an evaporator. When a sensor detects that frozen water droplets form on the evaporator, a valve positioned between the discharge of the compression and inlet of expansion device is opened. Refrigerant from the discharge of the compressor bypasses the gas cooler and enters the inlet of the expansion device. The high temperature refrigerant melts the frost on the evaporator. As the frost melts, the passage of the evaporator is opened to allow air to flow through the evaporator.
Abstract:
A heat pump system includes a liquid pump used to circulate liquid through the system to prevent freezing when the heat pump is off. In the system, the liquid is circulated in the reverse direction. The liquid used to prevent freezing comes from the hot section of the storage reservoir, such that the flow rate can be reduced while achieving the same amount of freeze protection. Also, as the hot liquid is circulated through the system at the low flow rate, it will become cold through heat transfer with the system as it prevents freezing and will be delivered to the cold section of the storage reservoir at a low temperature. As indicated above, the colder the temperature of the liquid supplied to the heat pump during operation, the more efficient the heat pump system will be. The present invention also prevents the cold liquid from lowering the temperature of the hot section of the storage reservoir during the freeze protection mode.
Abstract:
A vapor compression system includes a compressor, a gas cooler, an expansion device, and an evaporator. Refrigerant is circulated through the closed circuit cycle. Preferably, carbon dioxide is used as the refrigerant. Adaptive control is employed to optimize the coefficient of performance of the vapor compression system. As the system changes over time, a model that operates the system is modified. The model is determined by an adaptive control algorithm including variable coefficients. As the model changes, the variables of the adaptive control algorithm change. A control of the gas cooler is then adjusted to regulate the high pressure of the system, and therefore the coefficient of performance. In a first example, Least Mean Squares (LMS) is used to modify the variables of the adaptive control algorithm to optimize the coefficient of performance. In a second example, the coefficient of performance is optimized by a slowly varying periodic excitation method. A third example employs triangularization to find the optimal coefficient of performance.
Abstract:
A water heater is provided by a refrigerant cycle, in which the gas cooler is utilized to heat the water. A drain is incorporated into a water circuit for draining all of the water outwardly of the circuit when the system is shut down. In a preferred embodiment, a water outlet of the gas cooler is at the vertically lowermost portion of the water circuit. A drain valve is placed in this vertically lowermost location such that the water can be easily drained.
Abstract:
A method of sanitizing pipes, etc. in a hot water supply system includes the steps of normally heating water by driving water from a water storage tank, into a heat exchanger. Typically, a water pump is stopped once the water storage tank receives a particular percentage of hot water. However, when a sanitation mode is desired, the pump is not stopped, such that the water tank becomes all, or almost all, hot water. The hot water is then delivered to the pump, and from the pump to the heat exchanger. This hot water is thus operable to sanitize pipes and the pump.
Abstract:
A transcritical vapor compression system includes a compressor assembly that includes an oil separator for separating oil from refrigerant. The oil separator is disposed between a motor and a compression chamber in a sub-critical portion of the vapor compression system. Oil emitted from the drive assembly attached to the motor is substantially removed from the refrigerant before entering the compression chamber of the compressor.
Abstract:
A refrigerant cycle is provided with a control for an expansion device to achieve a desired compressor discharge pressure. The system operates transcritically, such that greater freedom over compressor discharge pressure is provided. The system's efficiency is optimized by selecting an optimum discharge pressure. The optimum discharge pressure is selected based upon sensed environmental conditions, and the expansion device is adjusted to achieve the desired compressor discharge pressure. A feedback loop may be provided to sense the actual compressor discharge pressure and adjust the actual compressor discharge pressure by further refining the expansion device. The system is disclosed providing heated water based upon a demand for a particular hot water temperature. Further, the optimum discharge pressures may be determined experimentally, with an offset added to the experimentally determined value to ensure that the actual pressure is higher than the desired, or optimum pressure for the particular refrigerant cycle. In one embodiment, a formula is utilized to determine the optimum discharge pressure.