Abstract:
A girth measuring device for a shoe is disclosed. The portions of the device are configured to be placed inside the shoe and a measurement ribbon is moved from a retracted position to an expanded position. As the measurement ribbon expands, it eventually contacts the shoe. This contact can be sensed and information related to the girth of the shoe is available.
Abstract:
A high volume piezoelectric atomizer for use with common consumer spray products is disclosed. The piezoelectric atomizer may include an actuator, a substrate and a supply of a liquid product to be dispensed. The substrate may include a plurality of tapered perforations in direct contact with the supply of a liquid product. A control circuit vibrates the actuator, substrate and its tapered perforations against the supply at velocities of at least 500 mm/s. Droplets are dispensed at a delivery rate of approximately 0.2 g/s resulting in plumes of at least 2 feet in length resulting in a Valpey factor of at least 51.0.
Abstract:
A dispensing device includes a dispenser configured to dispense a volatile material, a sensor configured to detect an environmental condition, and a nonlinear circuit element coupled to the sensor to establish a bias point. A voltage level at the bias point varies nonlinearly with respect to a current that flows through the sensor, wherein the current that flows through the sensor represents the environmental condition. The dispensing device further includes a controller coupled to the bias point. The controller controls the dispenser to dispense the volatile material in response to the environmental condition.
Abstract:
A preamplifier system adapted for a Loran receiver includes a buffer amplifier receiving the signal from the antenna at its input and a tuned circuit connected between the input of the buffer amplifier and ground. The tuned circuit includes a parallel combination of a resistance, capacitance and inductance with values selected such that a resonant frequency is provided substantially at or near the carrier frequency of the Loran signal to pass it while higher and lower frequencies, constituting extraneous noise signals, are substantially attenuated. In particular, low frequency, e.g. 60 Hz signals and DC from sources such as precipitation static, are shunted to ground through the parallel inductor in the tuned circuit so that these low frequency components do not affect the performance of the receiver. A secondary filter section is connected to the output of the buffer amplifier and has components that may be selected in value such that the overall transfer function of the preamplifier, including the tuned input circuit, has a desired bandpass characteristic. Thermal noise contributed by the parallel resistor in the tuned circuit may be reduced by feeding back the output of the buffer amplifier through the resistor to effectively reduce its noise contribution while leaving the effective input resistance the same. Notch filters may be incorporated with the input tuned circuit to reject strong extraneous signals within the passband.
Abstract:
A dispensing device includes a dispenser configured to dispense a volatile material, a sensor configured to detect an environmental condition, and a nonlinear circuit element coupled to the sensor to establish a bias point. A voltage level at the bias point varies nonlinearly with respect to a current that flows through the sensor, wherein the current that flows through the sensor represents the environmental condition. The dispensing device further includes a controller coupled to the bias point. The controller controls the dispenser to dispense the volatile material in response to the environmental condition.
Abstract:
An active material and light emitting device comprises an ultrasonic atomizer assembly and a light emission device. The active material and light emitting device are operated such that the active material is periodically or aperiodically dispensed and the light emitting device flickers to simulate a real candle.
Abstract:
A high volume piezoelectric atomizer for use with common consumer spray products is disclosed. The piezoelectric atomizer may include an actuator, a substrate and a supply of a liquid product to be dispensed. The substrate may include a plurality of tapered perforations in direct contact with the supply of a liquid product. A control circuit vibrates the actuator, substrate and its tapered perforations against the supply at velocities of at least 500 mm/s. Droplets are dispensed at a delivery rate of approximately 0.2 g/s resulting in plumes of at least 2 feet in length resulting in a Valpey factor of at least 51.0.
Abstract:
A drive circuit for and method of driving a piezoelectric actuator utilizes an impedance coupled to the piezoelectric actuator, wherein the impedance and the piezoelectric actuator together form a tank circuit that has a resonant frequency. A first circuit is provided that drives the actuator at the resonant frequency and a second circuit is further provided that selectively operates the first circuit in one of at least two modes of operation including a first mode that causes the actuator to be energized at a first duty cycle and a second mode that causes the actuator to be energized at a second duty cycle.
Abstract:
A compact temperature controlled crystal oscillator employs a high conductivity heat spreader bonded to one side of a printed circuit board into the crystal. Heaters are arranged at edges of the circuit board and a temperature sensor for the temperature regulation circuitry is centered in the circuit board with components of high thermal sensitivity being placed in zones closer to the temperature sensor. An operating temperature of the heat spreader is selected by measuring multiple operating temperatures at different ambient temperatures and picking an operating temperature that causes a least absolute frequency deviation.