摘要:
The present invention provides a test strip for measuring a concentration of an analyte of interest in a biological fluid, wherein the test strip may be encoded with information that can be read by a test meter into which the test strip is inserted.
摘要:
A method of measuring an analyte in a biological fluid comprises applying an excitation signal having a DC component and an AC component. The AC and DC responses are measured; a corrected DC response is determined using the AC response; and a concentration of the analyte is determined based upon the corrected DC response. Other methods and devices are disclosed.
摘要:
An analyte test sensor strip is disclosed having information coded thereon as well as a method of forming the same and conducting an analyte test using the analyte test sensor strip. Information relating to an attribute of the strip or batch/lot of strips may be coded based on resistance values pertaining to electrical aspects of the strip, such as a primary resistive element and a secondary resistive element, the secondary resistive element having one of a plurality of states defined by a location of a closed tap to form a unique resistive path for the secondary resistive element that includes a portion of the primary resistive element depending on the location of the closed tap. The states may be formed on the strip by a secondary processing step in the manufacture of the strip in which a plurality of taps are severed leaving only one tap in a closed state.
摘要:
A lancet-sampler system is configured to automatically remove a protective cover from a lancet and automatically unpack a test pad just prior to use. This minimizes the risk of injury and reduces the chance of cross-contamination between the lancet and the test pad. The lancet defines a capillary groove for drawing body fluid from the incision via capillary action and a sample transfer opening for collecting the fluid from the groove. A carrier tape is coupled to the lancet. The carrier tape includes a test pad for analyzing the fluid. The tape is folded around the test pad to form an airtight package. The test pad is located at a position to align with the sample transfer opening when the tape is unfolded. The protective cover covers a portion of the lancet, and when the tape is pulled, the protective cover is automatically pulled from the lancet.
摘要:
A lancet-sampler system is configured to automatically remove a protective cover from a lancet and automatically unpack a test pad just prior to use. This minimizes the risk of injury and reduces the chance of cross-contamination between the lancet and the test pad. The lancet defines a capillary groove for drawing body fluid from the incision via capillary action and a sample transfer opening for collecting the fluid from the groove. A carrier tape is coupled to the lancet. The carrier tape includes a test pad for analyzing the fluid. The tape is folded around the test pad to form an airtight package. The test pad is located at a position to align with the sample transfer opening when the tape is unfolded. The protective cover covers a portion of the lancet, and when the tape is pulled, the protective cover is automatically pulled from the lancet.
摘要:
The present invention provides a test strip for measuring a concentration of an analyte of interest in a biological fluid, wherein the test strip may be encoded with information that can be read by a test meter into which the test strip is inserted. In one embodiment, a first test strip comprises: a first measurement electrode connectable to a test meter; a first trace loop with a first associated resistance, where the first trace loop is connectable to the test meter; and a second trace loop with a second associated resistance, where the second trace loop is connectable to the test meter. The test meter is adapted to: receive the first test strip; connect to the first measurement electrode, the first trace loop, and the second trace loop; and obtain a first resistance ratio by comparing the first and second associated resistances.
摘要:
The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 3.0 seconds or less, and/or having a clinically low Total System Error.
摘要:
A method of measuring an analyte in a biological fluid comprises applying an excitation signal having a DC component and an AC component. The AC and DC responses are measured; a corrected DC response is determined using the AC response; and a concentration of the analyte is determined based upon the corrected DC response. Other methods and devices are disclosed.
摘要:
A biosensor having multiple electrical functionalities located both within and outside of the measurement zone in which a fluid sample is interrogated. Incredibly small and complex electrical patterns with high quality edges provide electrical functionalities in the biosensor and also provide the electrical wiring for the various other electrical devices provided in the inventive biosensor. In addition to a measurement zone with multiple and various electrical functionalities, biosensors of the present invention may be provided with a user interface zone, a digital device zone and/or a power generation zone. The inventive biosensors offer improved ease of use and performance, and decrease the computational burden and associated cost of the instruments that read the biosensors by adding accurate yet cost-effective functionalities to the biosensors themselves.
摘要:
The present invention provides a test strip for measuring a concentration of an analyte of interest in a biological fluid, wherein the test strip may be encoded with information that can be read by a test meter into which the test strip is inserted. In one embodiment, a first test strip comprises: a first measurement electrode connectable to a test meter; a first trace loop with a first associated resistance, where the first trace loop is connectable to the test meter; and a second trace loop with a second associated resistance, where the second trace loop is connectable to the test meter. The test meter is adapted to: receive the first test strip; connect to the first measurement electrode, the first trace loop, and the second trace loop; and obtain a first resistance ratio by comparing the first and second associated resistances.