Abstract:
A method for identifying singleton outlier pixels in a selected color space in a digital image including a plurality of pixels, includes for each 3×3 patch of pixels in the image, calculating the diameter of the 3×3 patch of pixels. For each pixel in the patch, the distance to its nearest neighbor pixel within the patch is computed, as measured in the selected color space. The computed distance from each pixel in the patch is compared to its nearest neighbor with a threshold that is a preselected fraction of the diameter. A center pixel in the patch is identified as an outlier pixel if its calculated distance to its nearest neighbor is the largest distance to a nearest neighbor and exceeds the threshold.
Abstract:
A system and method for effectively performing an image data transformation procedure may include an electronic camera device that is implemented to capture primary image data corresponding to a photographic target. A transformation manager in the electronic camera device may be configured to convert the primary image data into secondary image data by utilizing selectable transformation parameters that are optimized by utilizing an optimization metric to thereby minimize noise characteristics in the secondary image data. The transformation parameters may be stored in parameter lookup tables in the electronic camera device for use by the transformation manager in performing the image data transformation procedure.
Abstract:
An auto-focus system employing a tunable liquid crystal lens is provided that collects images at different optical power values as the liquid crystal molecules are excited between a ground state and a maximum optical power state tracking image focus scores. An image is acquired at a desired optical power value less than maximum optical power established with the liquid crystal molecules closer a fully excited state than the maximum optical power state having the same image focus score. This drive signal employed during image acquisition uses more power than was used to achieve the same optical power value during the auto-focus scan, while actively driving the liquid crystal molecules is fast. A pause due to image transfer/processing delays after acquisition is employed to allow slow relaxation of the liquid crystal molecules back to the ground state in preparation for a subsequent focus search.
Abstract:
An auto-focus system employing a tunable liquid crystal lens is provided that collects images at different optical power values as the liquid crystal molecules are excited between a ground state and a maximum optical power state tracking image focus scores. An image is acquired at a desired optical power value less than maximum optical power established with the liquid crystal molecules closer a fully excited state than the maximum optical power state having the same image focus score. This drive signal employed during image acquisition uses more power than was used to achieve the same optical power value during the auto-focus scan, while actively driving the liquid crystal molecules is fast. A pause due to image transfer/processing delays after acquisition is employed to allow slow relaxation of the liquid crystal molecules back to the ground state in preparation for a subsequent focus search.
Abstract:
A method for identifying singleton outlier pixels in a selected color space in a digital image including a plurality of pixels, includes for each 3×3 patch of pixels in the image, calculating the diameter of the 3×3 patch of pixels. For each pixel in the patch, the distance to its nearest neighbor pixel within the patch is computed, as measured in the selected color space. The computed distance from each pixel in the patch is compared to its nearest neighbor with a threshold that is a preselected fraction of the diameter. A center pixel in the patch is identified as an outlier pixel if its calculated distance to its nearest neighbor is the largest distance to a nearest neighbor and exceeds the threshold.
Abstract:
An auto-focus system employing a tunable liquid crystal lens is provided that collects images at different optical power values as the liquid crystal molecules are excited between a ground state and a maximum optical power state tracking image focus scores. An image is acquired at a desired optical power value less than maximum optical power established with the liquid crystal molecules closer a fully excited state than the maximum optical power state having the same image focus score. This drive signal employed during image acquisition uses more power than was used to achieve the same optical power value during the auto-focus scan, while actively driving the liquid crystal molecules is fast. A pause due to image transfer/processing delays after acquisition is employed to allow slow relaxation of the liquid crystal molecules back to the ground state in preparation for a subsequent focus search.
Abstract:
A method and apparatus to reconfigure battery systems for r/c model vehicles that permit the rapid reconfiguration of battery cells to connect to many different vehicle systems with various serial and parallel configurations employing standard r/c battery connectors according to the user's present needs. In one instance of the application individual battery cells can independently be discharged and/or recharged.
Abstract:
In a method for creating at least five to seven color separations for input into a raster image processor for creation of at least five screen separations for use with at least a five color press to create at least a five color printed page, a scanned digitized image is created represented by at least three digitized color image signals. These at least three digitized color image signals are input into a digital color separation computer. The digital color separation computer is used to create at least five single color unscreened image separations in the form of computer files. The computer files are input into a raster image processor to create at least five single color screen separations in the form of electronic signals. The electronic signals are then fed to a film recorder to create at least five single color screen separation films used in conjunction with a five color press to create the at least five color printed page. The digital color separation computer computes four color signals from the three digitized color image signals of the digitized image and then creates a fifth color signal by searching for a maximum saturated color from among three colors derived from the at least three digitized color image signals. Correction factors in the form of tables are created representing various printing environment parameters. These correction factors are applied to the at least five color signals to obtain the at least 5-color separations.
Abstract:
An auto-focus system employing a tunable liquid crystal lens is provided that collects images at different optical power values as the liquid crystal molecules are excited between a ground state and a maximum optical power state tracking image focus scores. An image is acquired at a desired optical power value less than maximum optical power established with the liquid crystal molecules closer a fully excited state than the maximum optical power state having the same image focus score. This drive signal employed during image acquisition uses more power than was used to achieve the same optical power value during the auto-focus scan, while actively driving the liquid crystal molecules is fast. A pause due to image transfer/processing delays after acquisition is employed to allow slow relaxation of the liquid crystal molecules back to the ground state in preparation for a subsequent focus search.
Abstract:
A method and system are provided for approximating spectral sensitivities of a particular image sensor, the image sensor having a color filter array positioned over the image sensor. In one example of the method, the method involves measuring spectral sensitivities of a set of image sensors each having a color filter array positioned over the image sensor, calculating mean spectral sensitivities of the set of image sensors for each color within the color filter array, measuring outputs of a particular image sensor when capturing a picture of a plurality of color patches under a first illuminant and calculating spectral sensitivities of the particular image sensor using the mean spectral sensitivities and the output of the particular image sensor. In some embodiments, the method further comprises utilizing the calculated spectral sensitivities to determine outputs of the particular image sensor under a second illuminant. In some embodiments, the method further comprises utilizing the calculated spectral sensitivities to calibrate a camera including the image sensor.