摘要:
Techniques for co-existence between wireless Radio Access Technologies (RATs) are disclosed. During an active period of a Discontinuous Transmission (DTX) communication pattern, a first signal may be transmitted during a first subframe and a second signal may be transmitted during a second subframe, while during an inactive period the first signal may be transmitted during the first subframe and the second signal may be omitted during the second subframe. Retransmission of one or more packets may take place over a subset of less than all retransmission opportunities based on the DTX communication pattern. A Secondary Cell (SCell) may be reconfigured as the Primary Cell (PCell) and the PCell may be reconfigured as the SCell for one or more access terminals based on a load balancing condition or a channel selection condition.
摘要:
To improve performance in devices capable of communication using multiple radio access technologies (RATs), a gap pattern may be constructed in which a first RAT is quieted during certain times to allow for a second RAT to operate without interference. Gap patterns may be constructed based on timeline constraints, such as grant scheduling and HARQ performance, or based on desired performance levels of one or more of the RATs. Gap patterns may be selected by a user equipment or base station. Gap patterns may be selected to protect information in certain subframes. Potential gap patterns may be assigned weights indicating their desirability.
摘要:
A multi-radio device, such as User Equipment (UE), may experience coexistence issues among various ones of its constituent radio devices that operate at the same time. Various aspects of the disclosure provide techniques to mitigate coexistence issues in multi-radio devices, where significant in-device coexistence problems can exist. In particular, a method for coexistence of multi-radio devices is described. The method includes identifying, at an upper layer of a multi-radio UE, a type of incoming broadcast stream data. The method further includes determining a coexistence policy for operation of communication resources within the multi-radio UE based on the type of the incoming broadcast stream data. The method also includes arbitrating, at a lower layer of the multi-radio UE, between the communication resources based on the coexistence policy.
摘要:
A method for mitigating the impact of a power imbalance on a remote data rate in a wireless local area network (WLAN) includes transmitting a wireless local area network (WLAN) acknowledgement (ACK) packet at a first transmit power level to a remote device. The method further includes transmitting, to the remote device, a WLAN data packet at a second transmit power level that is lower than the first transmit power level of the WLAN ACK packet. Another method for mitigating the impact of a power imbalance on a remote data rate in a wireless local area network (WLAN) may include selecting a wireless local area network (WLAN) acknowledgement (ACK) packet transmit rate independent from a rate at which a WLAN data packet is received. This method further includes transmitting, to a remote device, a WLAN ACK packet at the selected WLAN ACK packet transmit rate.
摘要:
A method of wireless communication includes adjusting a channel quality indicator (CQI) to compensate for coexistence interference experienced between communication resources (such as an LTE radio and a Bluetooth radio). The CQI may be set to zero, falsely indicating to a serving enhanced NodeB that a UE is out of range, thereby creating a gap in LTE operation that may be used by an alternate radio access technology. To compensate for fluctuating interference, the CQI may be adjusted to incorporate average coexistence interference over a period of time. Alternatively, the CQI at a time may incorporate coexistence interference regardless of whether interference is experienced at that specific time. A CQI value may also be boosted to compensate for a CQI backoff. CQI may be adjusted to avoid a spiral of death effect.
摘要:
A method includes identifying coexistence issues among radios in a User Equipment (UE). The method also includes submitting a message to a base station that requests reconfiguring of a timing schedule of a first one of the supported radios to provide for periods of inactivity of the first one of the supported radios. The inactive periods provide operating periods for at least a second one of the supported radios. The inactive periods may be measurement gaps.
摘要:
A method of wireless communication includes adjusting a channel quality indicator (CQI) to compensate for coexistence interference experienced between communication resources (such as an LTE radio and a Bluetooth radio). The CQI may be set to zero, falsely indicating to a serving enhanced NodeB that a UE is out of range, thereby creating a gap in LTE operation that may be used by an alternate radio access technology. To compensate for fluctuating interference, the CQI may be adjusted to incorporate average coexistence interference over a period of time. Alternatively, the CQI at a time may incorporate coexistence interference regardless of whether interference is experienced at that specific time. A CQI value may also be boosted to compensate for a CQI backoff. CQI may be adjusted to avoid a spiral of death effect.
摘要:
A method of wireless communication includes monitoring coexistence issues among supported radios in a User Equipment (UE). The method includes determining a coexistence policy for communication resource operation within a user equipment (UE) and configuring communication resources of the user equipment in accordance with the determined coexistence policy. The policy may give priority to an LTE modem, an ISM modem, or may implement a variable priority scheme. The policy may be communicated to each modem from a host over a software messaging communication line. Modems in the UE may communicate with each other through logical lines providing real time communication. The policy may determine the operation of each modem and the treatment of the logical lines by each modem.
摘要:
To comport with specific absorption rate (SAR) requirements for a transmitting multi-radio mobile device, transmissions of the multiple radios may be duplexed to ensure compliance with communication regulations. Duplexing of transmissions may occur if overall transmissions exceed a particular threshold value. The duplexing may be opportunistic or deterministic.
摘要:
A wireless communication device configured for receiving a wireless multiple-input and multiple-output signal. The wireless communication device includes a first multiple-input and multiple-output carrier aggregation receiver reuse architecture. The first multiple-input and multiple-output carrier aggregation receiver reuse architecture includes a first antenna, a second antenna and a transceiver chip. The first multiple-input and multiple-output carrier aggregation receiver reuse architecture reuses a first carrier aggregation receiver path. The wireless communication device also includes a second multiple-input and multiple-output carrier aggregation receiver reuse architecture. The second multiple-input and multiple-output carrier aggregation receiver reuse architecture includes a third antenna, a fourth antenna and a receiver chip. The second multiple-input and multiple-output carrier aggregation receiver reuse architecture reuses a second carrier aggregation receiver path.