Abstract:
A thin-film magnetic head substrate according to the present invention includes: a ceramic base with a principal surface; and an undercoat film, which covers the principal surface of the ceramic base. An electrical/magnetic transducer is provided on the undercoat film. The substrate further includes an intermediate layer between the principal surface of the ceramic base and the undercoat film. The intermediate layer is made of a material other than an aluminum oxide and has been patterned so as to make a portion of the principal surface of the ceramic base contact with the undercoat film.
Abstract:
A method of manufacturing an SiC single crystal wafer according to the present invention includes the steps of: (a) preparing an SiC single crystal wafer 10 with a mirror-polished surface; (b) oxidizing the surface of the SiC single crystal wafer 10 with plasma, thereby forming an oxide layer 12 on the surface of the SiC single crystal wafer; and (c) removing at least a portion of the oxide layer 12 by a reactive ion etching process. Preferably, the surface of the wafer is planarized by repeatedly performing the steps (b) and (c) a number of times.
Abstract:
A thin-film magnetic head wafer includes a first principal surface and a second principal surface which are substantially parallel to each other. An electrical/magnetic transducer is provided on the first principal surface. Identification information is recorded on the first principal surface of the wafer.
Abstract:
A method for producing a silicon carbide single crystal substrate according to the present invention includes steps of: (A) preparing a silicon carbide single crystal substrate having a mechanically polished main face; (B) performing chemical mechanical polishing on the main face of the silicon carbide single crystal substrate using a polishing slurry containing abrasive grains dispersed therein to finish the main face as a mirror surface; (C′1) oxidizing at least a part of the main face finished as a mirror surface by a gas phase to form an oxide; and (C′2) removing the oxide.
Abstract:
A method of manufacturing an SiC single crystal wafer according to the present invention includes the steps of: (a) preparing an SiC single crystal wafer 10 with a mirror-polished surface; (b) oxidizing the surface of the SiC single crystal wafer 10 with plasma, thereby forming an oxide layer 12 on the surface of the SiC single crystal wafer; and (c) removing at least a portion of the oxide layer 12 by a reactive ion etching process. Preferably, the surface of the wafer is planarized by repeatedly performing the steps (b) and (c) a number of times.
Abstract:
A method of marking a sintered body includes the step of preparing the sintered body by sintering a mixture of first and second types of powder particles. The first type of powder particles is made of a first material and the second type of powder particles is made of a second material that has a different etch susceptibility from the first material. The method further includes the step of writing ID information on the surface of the sintered body by forming a first concave region to a depth of at least about 10 nm under the surface of the sintered body and a second concave region under the first concave region, respectively. The first concave region is formed by etching away both the first and second types of powder particles, while the second concave region is formed by etching away only the first type of powder particles.
Abstract:
A thin-film magnetic head supporting structure includes: an FeAlSi alloy film; a ceramic substrate used for structural support of the FeAlSi alloy film; and an intermediate multilayer structure disposed between the FeAlSi alloy film and the ceramic substrate. The intermediate multilayer structure includes a Cr film and an Fe film, which are stacked in this order over the ceramic substrate.
Abstract:
A substrate for a thin-film magnetic head includes a ceramic base and an undercoat film of amorphous SiC, which is supported on the ceramic base.
Abstract:
A method of marking a sintered body includes the step of preparing the sintered body by sintering a mixture of first and second types of powder particles. The first type of powder particles is made of a first material and the second type of powder particles is made of a second material that has a different etch susceptibility from the first material. The method further includes the step of writing ID information on the surface of the sintered body by forming a first concave region to a depth of at least about 10 nm under the surface of the sintered body and a second concave region under the first concave region, respectively. The first concave region is formed by etching away both the first and second types of powder particles, while the second concave region is formed by etching away only the first type of powder particles.
Abstract:
A thin-film magnetic head wafer includes a first principal surface and a second principal surface which are substantially parallel to each other. An electrical/magnetic transducer is provided on the first principal surface. Identification information is recorded on the first principal surface of the wafer.