Abstract:
The present invention relates to a heat-insulating structural material, which: firstly, can minimize or prevent a thermal bridge by improving the structure of the connection part of the heat-insulating structural material; secondly, improves insulation performance by arranging a vacuum insulation material inside the core layer of the heat-insulating structural material; and thirdly, increases structural stiffness by forming the core layer from a non-foaming polymer material having excellent structural performance, prevents gas from moving in or out of the vacuum insulation material through the air-tight adhesive structure of the core layer, and can improve fire protection performance so as not to be vulnerable to fire, and thus the present invention is universally applicable to fields requiring insulation ability and structural performance.
Abstract:
A method of manufacturing a semiconductor device which can prevent leakage current caused by gate electrodes intersecting element isolation layers in a major axis of an active region, and which further has vertical channels to provide a sufficient overlap margin, and a semiconductor device manufactured using the above method. The device includes gate electrodes formed on element isolation layers that are disposed between active regions and have top surfaces that are higher than the top surfaces of the active regions. Since the gate electrodes are formed on the element isolation layers, leakage current in a semiconductor substrate is prevented. In addition, the gate electrodes are formed using a striped shape mask pattern, thereby obtaining a sufficient overlap margin compared to a contact shape or bar shape pattern.
Abstract:
A power circuit for reducing a leakage power using a negative voltage is provided. The power circuit includes a current source including a transistor including a gate. The power circuit further includes a current source control circuit connected to the gate of the transistor, and configured to apply a positive voltage to the gate of the transistor if the current source is to operate in an active mode, and apply the negative voltage to the gate of the transistor if the current source is to operate in an inactive mode.
Abstract:
A recessed gate structure in a semiconductor device includes a gate electrode partially buried in a substrate, a blocking member formed in the buried portion of the gate electrode, and a gate insulation layer formed between the gate electrode and the substrate. The blocking member may effectively prevent a void or a seam in the buried portion of the gate electrode from contacting the gate insulation layer adjacent to a channel region in subsequent manufacturing processes. Thus, the semiconductor device may have a regular threshold voltage and a leakage current passing through the void or the seam may efficiently decrease.
Abstract:
A metal oxide semiconductor (MOS) includes an isolation layer disposed in a semiconductor substrate to define an active region. A source region and a drain region are disposed on both sides of the active region such that a first direction is defined from the source region to the drain region. A channel recess is disposed in the active region between the source and drain regions. The channel recess has a convex surface when viewed from a cross-sectional view taken along a second direction orthogonal to the first direction. A gate electrode fills the channel recess and crosses the active region in the second direction. A gate insulating layer is interposed between the gate electrode and the active region.
Abstract:
A semiconductor integrated circuit device having a 6F2 layout is provided. The semiconductor integrated circuit device includes a substrate; a plurality of unit active regions disposed in the substrate and extending in a first direction; first and second access transistors including first and second gate lines disposed on the substrate and extending across the unit active regions in a second direction forming an acute angle with the first direction; a first junction area disposed in the substrate between the first and second gate lines and second junction areas disposed on sides of the first and second gate lines where the first junction area is not disposed; a plurality of bitlines disposed on the substrate and extending in a third direction forming an acute angle with the first direction; and a plurality of bitline contacts directly connecting the first junction area and the bitlines.
Abstract:
A transistor includes substrate having an active region therein. The active region includes a recess therein having opposing sidewalls and a surface therebetween. A protrusion extends from the surface of the recess between the opposing sidewalls thereof. The transistor further includes a gate insulation layer on the protrusion in the recess, a gate electrode on the gate insulation layer in the recess, and source/drain regions in the active region on opposite sides of the gate electrode and adjacent to the opposing sidewalls of the recess. The gate electrode includes portions that extend into the recess between the protrusion and the opposing sidewalls of the recess. Related methods of fabrication are also discussed.
Abstract:
A metal oxide semiconductor (MOS) includes an isolation layer disposed in a semiconductor substrate to define an active region. A source region and a drain region are disposed on both sides of the active region such that a first direction is defined from the source region to the drain region. A channel recess is disposed in the active region between the source and drain regions. The channel recess has a convex surface when viewed from a cross-sectional view taken along a second direction orthogonal to the first direction. A gate electrode fills the channel recess and crosses the active region in the second direction. A gate insulating layer is interposed between the gate electrode and the active region.
Abstract:
A metal oxide semiconductor (MOS) includes an isolation layer disposed in a semiconductor substrate to define an active region. A source region and a drain region are disposed on both sides of the active region such that a first direction is defined from the source region to the drain region. A channel recess is disposed in the active region between the source and drain regions. The channel recess has a convex surface when viewed from a cross-sectional view taken along a second direction orthogonal to the first direction. A gate electrode fills the channel recess and crosses the active region in the second direction. A gate insulating layer is interposed between the gate electrode and the active region.
Abstract:
The present invention relates to a fault information processing system and method for a vehicle, which can satisfy a short control cycle to thereby reduce the burden applied to the CPU and enables significant fault information (freeze frame) to be frozen. To this end, this invention features that the fault detection unit, the fault processing unit, the fault management unit having independent control cycles process all the faults occurred depending on a priority in such a fashion that fault-related data (freeze frame) is frozen immediately after the occurrence of a fault irrespective of the type of the occurred fault and the priority. Also, the fault management unit retrieves the occurred fault at an independent control cycle, combines the previously frozen fault-related data and the occurred fault, and stores corresponding fault information in a buffer unit.