Abstract:
Micelle-templated superficially porous particles having a solid core and an outer porous shell with ordered pore structures and a narrow particle size distribution, such as about ±5% (one sigma), and a high specific surface area of about 5 to about 1000 m2/g.
Abstract:
A method of forming a nanoporous film is disclosed. The method comprises forming a coating solution including clusters, surfactant molecules, a solvent, and one of an acid catalyst and a base catalyst. The clusters comprise inorganic groups. The method further comprises aging the coating solution for a time period to select a predetermined phase that will self-assemble and applying the coating solution on a substrate. The method further comprises evaporating the solvent from the coating solution and removing the surfactant molecules to yield the nanoporous film.
Abstract:
The present invention is a process for making an inorganic/organic hybrid totally porous spherical silica particles by self assembly of surfactants that serve as organic templates via pseudomorphic transformation.
Abstract:
A method for preparing functionalized porous particles is disclosed, the method comprising contacting a plurality of porous silica particles with water, at least one of an ionic fluoride such as HF or NH4F or a basic activator, and a multifunctional organosilane. Also disclosed are functionalized porous silica particles produced from the methods disclosed herein.
Abstract:
A method of forming a nanoporous film is disclosed. The method comprises forming a coating solution including clusters, surfactant molecules, a solvent, and one of an acid catalyst and a base catalyst. The clusters comprise inorganic groups. The method further comprises aging the coating solution for a time period to select a predetermined phase that will self-assemble and applying the coating solution on a substrate. The method further comprises evaporating the solvent from the coating solution and removing the surfactant molecules to yield the nanoporous film.
Abstract:
Disclosed are porous-shell particles, methods of making the particles, and uses thereof. In one aspect, the porous-shell particles are superficially porous particles.
Abstract:
Superficially porous hybrid particles include hybrid solid cores that each contain an inorganic material and an organic material; and porous hybrid outer shells each include the inorganic and organic materials and having ordered pores, wherein the ordered pores have a median pore size ranges from about 15 to about 1000 Å with a pore size distribution (one standard deviation) of no more than 50% of the median pore size and produce at least one X-ray diffraction peak between 0.01° and 10° of a 2θ scan range; wherein the particles have a median size range from about 0.5 μm to about 100 μm with a particle size distribution (one standard deviation) of no more than 15% of the median particle size, wherein the inorganic material comprises a metal oxide selected from silica, alumina, titania or zirconia.
Abstract:
Disclosed are porous-shell particles, methods of making the particles, and uses thereof. In one aspect, the porous-shell particles are superficially porous particles.
Abstract:
Disclosed are porous-shell particles, methods of making the particles, and uses thereof. In one aspect, the porous-shell particles are superficially porous particles.
Abstract:
Disclosed are porous-shell particles, methods of making the particles, and uses thereof. In one aspect, the porous-shell particles are superficially porous particles.