Abstract:
The present invention relates to lead-free piezoelectric ceramic materials comprising crystalline (and preferably perovskite crystalline) structures of the formula Bi1-x(RE)xFeO3, where RE is one or more of La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and 0≦x≦0.3. The materials are at or near the morphotropic phase boundary and display enhanced piezoelectric and dielectric properties.
Abstract:
A display panel includes a plurality of light guides which emit received light, and a plurality of external light blocking members which are disposed between exit surfaces of the plurality of light guides, and block light from the outside. Accordingly, the bright room contrast of the PDP is enhanced.
Abstract:
The present invention relates to lead-free piezoelectric ceramic materials comprising crystalline (and preferably perovskite crystalline) structures of the formula Bi1-x(RE)xFeO3, where RE is one or more of La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and 0≦x≦0.3. The materials are at or near the morphotropic phase boundary and display enhanced piezoelectric and dielectric properties.
Abstract:
A plasma panel, a plasma display apparatus, and a method of forming a complex functional layer for the plasma panel are provided, the plasma panel including: a front glass substrate and a back glass substrate which form a plurality of discharge cells; and a complex functional layer which is formed on an external surface of the front glass substrate. The complex functional layer includes a base substance, an optical functional substance, and a polymer substance to improve a crashworthy property of the front glass substrate.
Abstract:
An optical film includes: a film body having a first surface formed with a groove pattern and a second surface formed with a bump pattern, which are formed in a single body; and a light absorption member formed inside the groove pattern.
Abstract:
A film adhered on a display panel includes a black layer for preventing an external light from entering into the display panel, and a reflective layer for preventing light emitted from the display panel from being absorbed in the black layer. The film minimizes the influence of an external light and improves transmittance, thereby providing a user with a good-quality picture.
Abstract:
A display panel is disclosed. The display panel includes an upper substrate through which light used for an image display passes and a plurality of light guides collecting and emitting the light transmitted through the upper substrate. The display panel may further include anti-reflective part, EMI shielding part, infrared filtering part or glass substrate to increase the bright room contrast or to improve the image displayed by the display panel.
Abstract:
Biphenyl derivatives having four substituents at meta positions of biphenyl structure, which is a core molecular structure, and organic electroluminescent devices using the biphenyl derivatives. The biphenyl derivatives are phosphorescent host compounds having amorphous structures and have excellent thermal stability and high solubility in general organic solvents, is easily to use for solution (or wet) process, and can easily energy-transfer to a metal complex used as dopant. The biphenyl derivatives also can be used as blue host materials of phosphorescent emission layer, hole transporting materials, or a hole injecting materials of an organic electroluminescent device.
Abstract:
A plasma display apparatus and a method for producing a plasma display panel are provided. The plasma display apparatus includes a panel which includes an upper panel coated with a functional material, and a lower panel located opposite a surface of the upper panel coated with the functional material, a driving circuit which drives the panel, and a base chassis on which the driving circuit is mounted.
Abstract:
A display panel includes a plurality of light guides which emit received light, and a plurality of external light blocking members which are disposed between exit surfaces of the plurality of light guides, and block light from the outside. Accordingly, the bright room contrast of the PDP is enhanced.