Abstract:
The method for configuring at least two devices of a hearing system (10) using a communication channel comprises the steps of a1) providing, using said communication channel, a first (11) of said devices with a request (R1) for the execution (E1) of at least one first configuring command in said first device (11); b1) executing (E1) said at least one first configuring command in said first device (11); a2) providing, using said communication channel, a second (12) of said devices with a request (R2) for the execution of at least one second configuring command in said second device (12); wherein step a2) is started before step b1) is completed, in particular wherein step a2) is completed before step b1) is completed. This way, time can be saved in configuring two or more devices (11;12;13) of a hearing system (10).
Abstract:
A wireless communication network system apparatus which provides for isochronous data transfer between node devices of the network, which provides at least one master node device which manages the data transmission between the other node devices of the network, which avoids or reduces interference from other wireless products and which resolves random errors associated with wireless technology including multipath fading. The system provides a communication protocol which shares the wireless transport medium between the node devices of the network, and which provides each node device on the network a designated transmit time slot for data communication.
Abstract:
A method of providing hearing assistance to a user of a hearing system (10, 11, 15) by utilizing an event-related audio broadcast stream (74), the method having the steps of: registering, by the user, for an event; providing, in response to said registering, a personal device (60) of the user with a stream access code required to connect to the broadcast audio stream; establishing a wireless link (72) between the hearing system and the personal device and transmitting the stream access code from the personal device to the hearing system; and connecting, by the hearing system, to the broadcast audio stream.
Abstract:
The present invention relates to an antenna module for a hearing device. The antenna module comprises a hollow core provided with an axial passageway and a winding around the core which is connectable with a hearing device. The antenna module is arranged to be at least partially contained within the ear canal of a user. This enables the antenna to be separated from sources of interference, since it can be positioned inside the ear canal away from hearing device electronics, thus reducing requirements for shielding and/or compensation. The invention further relates to an ear tip and a hearing device comprising such an antenna module.
Abstract:
A method for providing sound to at least one user, in which audio signals are captured and transformed into audio data that is transmitted to at least one receiver unit; audio signals are generated from the received audio data and the hearing of the user(s) stimulated thereby; wherein the audio data is transmitted as audio data packets in separate slots of a TDMA frame structure, wherein the transmission unit and the receiver unit(s) are synchronized to form a wireless network, wherein each TDMA frame structure has at least one listening slot during which the synchronized network members do not transmit data and at least one network members listens, and wherein control data is transmitted from an external control device according to a sequence pattern selected according to the duration and periodicity of the listening slot(s) to be received by the at least one synchronized network member during said listening slot(s).
Abstract:
An ultra wide band communication network is provided. One embodiment ultra wide band network includes a master device and a plurality of slave devices structured to communicate with the master device using a plurality of ultra wide band pulses. The ultra wide band network also includes a medium access control protocol comprising a time division multiple access frame, the time division multiple access frame comprising a first mode for protocol exchange and a second mode for data exchange. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
Abstract:
A wireless communication network system apparatus which provides for isochronous data transfer between node devices of the network, which provides at least one master node device which manages the data transmission between the other node devices of the network, which avoids or reduces interference from other wireless products and which resolves random errors associated with wireless technology including multipath fading. The system provides a communication protocol which shares the wireless transport medium between the node devices of the network, and which provides each node device on the network a designated transmit time slot for data communication.
Abstract:
A method of data transmission according to one embodiment of the invention includes transmitting a plurality of bursts to transmit data, each burst occupying at least one of a plurality of frequency bands. Specifically, a bandwidth of at least one of the plurality of bursts is at least two percent of the center frequency of the burst. In one preferred embodiment, a bandwidth of at least one of the plurality of bursts is at least 100 MHz. In another preferred embodiment, each burst occupies at least one of the plurality of frequency bands, but less than all of the plurality of frequency bands.
Abstract:
A polling method, apparatus, and system capable to detect the attachment and detachment of Universal Serial Bus (USB) devices in a wireless USB system. A USB hub provides a wired connection to the host, while providing wireless attachment points for its devices. The USB host periodically queries the hub looking for changes in the hub's status register. During each period, the hub sends a polling message through each of its wireless ports, and awaits a response. A peripheral device that wishes to attach to the system responds to the message by sending its unique peripheral address. If a device currently occupies the port, the hub sends out the device's unique assigned address as part of the polling message. If the device is still present, it responds by sending its unique peripheral address. If the host does not receive a response after multiple retries, the device is considered detached. The hub thus determines the status of the ports and updates the appropriate bits in the status register, which is then queried by the host.
Abstract:
A Medium Access Control protocol software architecture which comprises a microcode component providing the protocol implementation level functions and an engine component providing hardware level functions. The Medium Access Control protocol and method for use in a network system allows for centralized management of all MAC-level services by a master device. The Medium Access Control protocol provides an improved protocol message throughput via the sequence retransmission request protocol scheme. The Medium Access Control protocol provides a reduced data transmission latency and provides dynamic allocation of data slots within a Time Division Multiple Access frame definition. The Medium Access Control protocol also provides a set of failure management functions and power control support.