Abstract:
A fuel cell comprising a pair of electrodes and an electrolyte body comprising an electrolyte-retainable material and an electrolyte retained in the electrolyte-retainable material, the electrolyte body being provided between the pair of electrodes, characterized by the electrolyte body being integrated with at least one of the pair of the electrodes. The fuel cell has a good sealing between the electrodes and the electrolyte body.
Abstract:
A fused carbonate type of fuel cell comprising an electrolytic body retaining an electrolyte therein which is arranged between an anode and a cathode, where electricity is electrochemically generated by feeding fuel gas and an oxidant to a fuel chamber arranged on the anode side and an oxidant chamber arranged on the cathode side, respectively, said fuel cell being characterized in that the electrolytic body comprises an electrolyte, an electrolyte-holding member for holding the electrolyte and an inorganic binder.
Abstract:
A unit cell is formed by a plurality of sub-unit cells as a result of dividing each of the electrodes and electrolytic plate into a plurality of parts. That is, the electrodes and the electrolytic plate are each divided into two parts by electrolytic plate support portions projected from the surfaces of separators. The support portions are pressed in contact with the end portions of the electrolytic plate so as to support the electrolytic plate and seal the reaction gas, preventing it from leaking. The electrolyte support portions of the separators can be provided with electrolyte supply paths, through which the electrolyte is supplied and impregnated into the electrolytic plate. The electrolyte can be supplied via the apertures provided in the separators, to the electrolyte supply paths.
Abstract:
A molten carbonate fuel cell comprising an anode, a cathode and a porous body impregnated with an electrolyte composition of metal carbonates, said body being sandwiched between both the electrodes and being made of one or more refractory, non-electron conductive, inorganic materials containing lithium titanate in an amount sufficient to stabilize said inorganic materials at a temperature of operation of said fuel cell, and operated by supplying a fuel into a fuel chamber placed in the anode side and an oxidant into an oxidant chamber placed in the cathode side, has improved stability for a long period of time and high fuel cell performance.
Abstract:
Fuel cell with improved and stabilized electrode performance having at least one gas diffusion electrode, where the gas diffusion electrode comprises an electronconductive, gas-permeable substrate and an electrode catalyst uniformly distributed on the substrate, the electrode catalyst comprising colonies each consisting of not more than 20 primary particles of noble metal each having a size of 10-30 A and being uniformly distributed and deposited on carrier powder.
Abstract:
A fuel cell provided with an electrolyte retaining plate made of electrical insulating long fibers such as lithium aluminate long fibers which have preferably a length of 100 to 400 .mu.m and a diameter of 1 to 4 .mu.m, are interlocked each other and have vacant spaces for filling an electrolyte can be constructed and operated safely without damaging the electrolyte retaining plate for a long period of time.
Abstract:
A fuel cell electrode being substantially free from cracks on the surface of catalyst layer on the electrode and having a good electrode performance under the atmospheric pressure or under pressure when assembled into a fuel cell, which comprises a gas-diffusing electroconductive substrate with continued pores and a water-repellent catalyst layer comprising electroconductive submicron particles having a catalyst, electroconductive materials each having a volume 10.sup.3 -10.sup.10 as large as the volume of the largest particle of the submicron particles and, if necessary, having a catalyst, and a water-repellent polymer as a binder, the electroconductive submicron particles and the electroconductive materials being provided in a mixing ratio by volume of the former to the latter of 95-50 to 5-50.
Abstract:
In a molten carbonate fuel cell, an anode or cathode is made of a sintered material containing a nickel oxide and/or cobalt oxide and a rare earth element oxide. This anode or cathode has a high activity and is stable at high temperatures.