Abstract:
An electronic device comprises an insulator, a local first gate embedded in the insulator with a top surface of the first gate being substantially coplanar with a surface of the insulator, a first dielectric layer formed over the first gate and insulator, and a channel. The channel comprises a bilayer graphene layer formed on the first dielectric layer. The first dielectric layer provides a substantially flat surface on which the channel is formed. A second dielectric layer formed over the bilayer graphene layer and a local second gate formed over the second dielectric layer. Each of the local first and second gates is capacitively coupled to the channel of the bilayer graphene layer. The local first and second gates form a first pair of gates to locally control a first portion of the bilayer graphene layer.
Abstract:
A method for forming a sensor includes forming a channel in substrate, forming a sacrificial layer in the channel, forming a sensor having a first dielectric layer disposed on the substrate, a graphene layer disposed on the first dielectric layer, and a second dielectric layer disposed on the graphene layer, a source region, a drain region, and a gate region, wherein the gate region is disposed on the sacrificial layer removing the sacrificial layer from the channel.
Abstract:
A fin structure including a vertical alternating stack of a first isoelectric point material layer having a first isoelectric point and a second isoelectric material layer having a second isoelectric point less than the first isoelectric point is formed. The first and second isoelectric point material layers become oppositely charged in a solution with a pH between the first and second isoelectric points. Negative electrical charges are imparted onto carbon nanotubes by an anionic surfactant to the solution. The electrostatic attraction causes the carbon nanotubes to be selectively attached to the surfaces of the first isoelectric point material layer. Carbon nanotubes are attached to the first isoelectric point material layer in self-alignment along horizontal lengthwise directions of the fin structure. A transistor can be formed, which employs a plurality of vertically aligned horizontal carbon nanotubes as the channel.
Abstract:
Transistor devices having vertically stacked carbon nanotube channels and techniques for the fabrication thereof are provided. In one aspect, a transistor device is provided. The transistor device includes a substrate; a bottom gate embedded in the substrate with a top surface of the bottom gate being substantially coplanar with a surface of the substrate; a stack of device layers on the substrate over the bottom gate, wherein each of the device layers in the stack includes a first dielectric, a carbon nanotube channel on the first dielectric, a second dielectric on the carbon nanotube channel and a top gate on the second dielectric; and source and drain contacts that interconnect the carbon nanotube channels in parallel. A method of fabricating a transistor device is also provided.
Abstract:
Transistor devices having nanoscale material-based channels (e.g., carbon nanotube or graphene channels) and techniques for the fabrication thereof are provided. In one aspect, a transistor device is provided. The transistor device includes a substrate; an insulator on the substrate; a local bottom gate embedded in the insulator, wherein a top surface of the gate is substantially coplanar with a surface of the insulator; a local gate dielectric on the bottom gate; a carbon-based nanostructure material over at least a portion of the local gate dielectric, wherein a portion of the carbon-based nanostructure material serves as a channel of the device; and conductive source and drain contacts to one or more portions of the carbon-based nanostructure material on opposing sides of the channel that serve as source and drain regions of the device.
Abstract:
A device with reduced gate resistance includes a gate structure having a first conductive portion and a second conductive portion formed in electrical contact with the first conductive portion and extending laterally beyond the first conductive portion. The gate structure is embedded in a dielectric material and has a gate dielectric on the first conductive portion. A channel layer is provided over the first conductive portion. Source and drain electrodes are formed on opposite end portions of a channel region of the channel layer. Methods for forming a device with reduced gate resistance are also provided.
Abstract:
A circuit includes a negative differential resistance (NDR) device which includes a gate and a graphene channel, and a gate voltage source which modulates a gate voltage on the gate such that an electric current through the graphene channel exhibits negative differential resistance.
Abstract:
A semiconductor device includes a carbon layer disposed on a substrate, a gate stack disposed on a portion of the carbon layer, a first cavity defined by the carbon layer and the substrate, a second cavity defined by the carbon layer and the substrate, a source region including a first conductive contact disposed in the first cavity, a drain region including a second conductive contact disposed in the second cavity.
Abstract:
Multiple types of gate stacks are formed on a doped semiconductor well. A high dielectric constant (high-k) gate dielectric is formed on the doped semiconductor well. A metal gate layer is formed in one device area, while the high-k gate dielectric is exposed in other device areas. Threshold voltage adjustment oxide layers having different thicknesses are formed in the other device areas. A conductive gate material layer is then formed over the threshold voltage adjustment oxide layers. One type of field effect transistors includes a gate dielectric including a high-k gate dielectric portion. Other types of field effect transistors include a gate dielectric including a high-k gate dielectric portion and a first threshold voltage adjustment oxide portions having different thicknesses. Field effect transistors having different threshold voltages are provided by employing different gate dielectric stacks and doped semiconductor wells having the same dopant concentration.
Abstract:
A method for forming a sensor includes forming a channel in substrate, forming a sacrificial layer in the channel, forming a sensor having a first dielectric layer disposed on the substrate, a graphene layer disposed on the first dielectric layer, and a second dielectric layer disposed on the graphene layer, a source region, a drain region, and a gate region, wherein the gate region is disposed on the sacrificial layer removing the sacrificial layer from the channel.