Abstract:
A method of semiconductor fabrication is provided. The method includes providing a model for a device parameter of a wafer as a function of first and second process parameters. The first and second process parameters correspond to different wafer characteristics, respectively. The method includes deriving target values of the first and second process parameters based on a specified target value of the device parameter. The method includes performing a first fabrication process in response to the target value of the first process parameter. The method includes measuring an actual value of the first process parameter thereafter. The method includes updating the model using the actual value of the first process parameter. The method includes deriving a revised target value of the second process parameter using the updated model. The method includes performing a second fabrication process in response to the revised target value of the second process parameter.
Abstract:
A method for improving alignment in a photolithography machine is provided. The method comprises identifying first empirical alignment data that has been determined from use of a target photomask within at least one non-target tool, and identifying second empirical alignment data that has been determined from use of a non-target photomask within a target tool. The method continues by identifying third empirical alignment data that has been determined from use of a non-target photomask within at least one non-target tool, and calculating from the first, second, and third empirical alignment data a predicted alignment data for the target photomask with the target tool. The method then proceeds by aligning the target photomask within the target tool using the predicted alignment data, exposing a pattern from the target photomask onto the wafer in the target tool, and further processing the exposed wafer.
Abstract:
A method includes performing a lithography process on a wafer to form a patterned photo resist, and measuring the wafer to determine an overlay error of the patterned photo resist. A high/low specification is determined using the overlay error. An overlay process value setting is generated and compared with the high/low specification to determine whether the overlay process value setting is within a range defined by the high/low specification.
Abstract:
A method for photolithography in semiconductor device manufacturing comprises defining test critical dimension target for a photolithography mask, measuring a mask critical dimension, comparing mask critical dimension to the test critical dimension target and determining a critical dimension deviation, determining a photolithography light base energy in response to the critical dimension deviation, and exposing the wafer according to the photolithography light base energy.
Abstract:
A method for patterning passivation layers including providing a semiconductor wafer comprising metal interconnects; forming a dielectric passivation layer on the metal interconnects; forming a photosensitive polymeric passivation layer on the dielectric passivation layer; patterning the photosensitive polymeric passivation layer in a first patterning process to form a first opening revealing a portion of the dielectric passivation layer; and, patterning the portion of the dielectric passivation layer in a second patterning process to form at least a second opening in the dielectric passivation layer.
Abstract:
A method includes performing a lithography process on a wafer to form a patterned photo resist, and measuring the wafer to determine an overlay error of the patterned photo resist. A high/low specification is determined using the overlay error. An overlay process value setting is generated and compared with the high/low specification to determine whether the overlay process value setting is within a range defined by the high/low specification.
Abstract:
A method for photolithography in semiconductor device manufacturing comprises defining test critical dimension target for a photolithography mask, measuring a mask critical dimension, comparing mask critical dimension to the test critical dimension target and determining a critical dimension deviation, determining a photolithography light base energy in response to the critical dimension deviation, and exposing the wafer according to the photolithography light base energy.
Abstract:
A method for patterning passivation layers including providing a semiconductor wafer comprising metal interconnects; forming a dielectric passivation layer on the metal interconnects; forming a photosensitive polymeric passivation layer on the dielectric passivation layer; patterning the photosensitive polymeric passivation layer in a first patterning process to form a first opening revealing a portion of the dielectric passivation layer; and, patterning the portion of the dielectric passivation layer in a second patterning process to form at least a second opening in the dielectric passivation layer.
Abstract:
A method for exposing a blanket photoresist layer employs exposing a minimum of two non-overlapping die sub-patterns within a single die region of the blanket photoresist layer, each exposed while employing a minimum of two separate masks. The use of the multiple masks and multiple sub-patterns provides upon development a patterned photoresist layer with enhanced dimensional precision and uniformity.
Abstract:
The present disclosure provides a semiconductor manufacturing method. The method includes providing product data of a product, the product data including a sensitive product parameter; searching existing products according to the sensitive product parameter to identify a relevant product from the existing products; determining an initial value of a processing model parameter to the product using corresponding data of the relevant product; assigning the initial value of the processing model parameter to a processing model associated with a manufacturing process; thereafter, tuning a processing recipe using the processing model; and performing the manufacturing process to a semiconductor wafer using the processing recipe.