摘要:
The subject invention relates to the surprising discovery that toxin complex (TC) proteins, obtainable from Xenorhabdus, Photorhabdus, and Paenibacillus, can be used interchangeably with each other. In particularly preferred embodiments of the subject invention, the toxicity of a “stand-alone” TC protein (from Photorhabdus, Xenorhabdus, or Paenibacillus, for example) is enhanced by one or more TC protein “potentiators” derived from a source organism of a different genus from which the toxin was derived. As one skilled in the art will recognize with the benefit of this disclosure, this has broad implications and expands the range of utility that individual types of TC proteins will now be recognized to have. Among the most important advantages is that one skilled in the art will now be able to use a single set of potentiators to enhance the activity of a stand-alone Xenorhabdus protein toxin as well as a stand-alone Photorhabdus protein toxin. (As one skilled in the art knows, Xenorhabdus toxin proteins tend to be more desirable for controlling lepidopterans while Photorhabdus toxin proteins tend to be more desirable for controlling coleopterans.) This reduces the number of genes, and transformation events, needed to be expressed by a transgenic plant to achieve effective control of a wider spectrum of target pests. Certain preferred combinations of heterologous TC proteins are also disclosed herein. Other objects, advantages, and features of the subject invention will be apparent to one skilled in the art having the benefit of the subject disclosure.
摘要:
The subject invention provides unique biological alternatives for pest control. More specifically, the present invention relates to novel pesticidal proteins, novel sources of pesticidal proteins, polynucleotides that encode such toxins, and to methods of using these toxins to control insects and other plant pests. The subject invention relates to the surprising discovery that Paenibacillus species, and proteins therefrom, have toxicity to lepidopterans. There have been no known reports of a Paenibacillus species, strain, or protein having toxicity to lepidopterans. This is also the first known example of a Paenibacillus Cry protein that is toxic to lepidopterans. Furthermore, this is the first known report of a Paenibacillus having toxin complex (TC)-like proteins. The DAS1529 isolate disclosed here is also the first known example of a natural bacterium that produces both a Cry toxin and TC proteins. The subject invention also relates to new classes of Cry and TC proteins that are pesticidally active.
摘要:
The subject invention relates to novel Xenorhabdus toxin complex (TC) proteins and genes that encode these proteins. More specifically, the subject invention relates to TC genes and proteins obtainable from Xenorhabdus strain Xwi. The subject invention also provides an exochitinase obtainable from the Xwi strain. This exochitinase can be used to control insects using methods known in the art.
摘要:
The subject invention relates to novel Xenorhabdus toxin complex (TC) proteins and genes that encode these proteins. More specifically, the subject invention relates to TC genes and proteins obtainable from Xenorhabdus strain Xwi. The subject invention also provides an exochitinase obtainable from the Xwi strain. This exochitinase can be used to control insects using methods known in the art.
摘要:
The subject invention relates to the surprising discovery that toxin complex (TC) proteins, obtainable from Xenorhabdus, Photorhabdus, and Paenibacillus, can be used interchangeably with each other. In particularly preferred embodiments of the subject invention, the toxicity of a “stand-alone” TC protein (from Photorhabdus, Xenorhabdus, or Paenibacillus, for example) is enhanced by one or more TC protein “potentiators” derived from a source organism of a different genus from which the toxin was derived. As one skilled in the art will recognize with the benefit of this disclosure, this has broad implications and expands the range of utility that individual types of TC proteins will now be recognized to have. Among the most important advantages is that one skilled in the art will now be able to use a single set of potentiators to enhance the activity of a stand-alone Xenorhabdus protein toxin as well as a stand-alone Photorhabdus protein toxin. (As one skilled in the art knows, Xenorhabdus toxin proteins tend to be more desirable for controlling lepidopterans while Photorhabdus toxin proteins tend to be more desirable for controlling coleopterans.) This reduces the number of genes, and transformation events, needed to be expressed by a transgenic plant to achieve effective control of a wider spectrum of target pests. Certain preferred combinations of heterologous TC proteins are also disclosed herein. Other objects, advantages, and features of the subject invention will be apparent to one skilled in the art having the benefit of the subject disclosure.
摘要:
A correlator for use in a timing recovery apparatus of a receiver in a multicarrier transmission system. The correlator locates the beginning of a data frame and initializes a pointer register with an address to a location within the receive signal buffer. Data is transferred to a signal converter from the receive signal buffer where the samples that are fed into the converter are determined by the address stored in the pointer register.
摘要:
The subject invention relates to the surprising discovery that toxin complex (TC) proteins, obtainable from Xenorhabdus, Photorhabdus, and Paenibacillus, can be used interchangeably with each other. In particularly preferred embodiments of the subject invention, the toxicity of a “stand-alone” TC protein (from Photorhabdus, Xenorhabdus, or Paenibacillus, for example) is enhanced by one or more TC protein “potentiators” derived from a source organism of a different genus from which the toxin was derived. As one skilled in the art will recognize with the benefit of this disclosure, this has broad implications and expands the range of utility that individual types of TC proteins will now be recognized to have. Among the most important advantages is that one skilled in the art will now be able to use a single set of potentiators to enhance the activity of a stand-alone Xenorhabdus protein toxin as well as a stand-alone Photorhabdus protein toxin. (As one skilled in the art knows, Xenorhabdus toxin proteins tend to be more desirable for controlling lepidopterans while Photorhabdus toxin proteins tend to be more desirable for controlling coleopterans.) This reduces the number of genes, and transformation events, needed to be expressed by a transgenic plant to achieve effective control of a wider spectrum of target pests. Certain preferred combinations of heterologous TC proteins are also disclosed herein. Other objects, advantages, and features of the subject invention will be apparent to one skilled in the art having the benefit of the subject disclosure.
摘要:
The subject invention relates to novel nucleic acid encoding a Xenorhabdus strain Xwi toxin complex (TC) protein and plants and bacteria transformed therewith.
摘要:
The subject invention relates to novel Xenorhabdus toxin complex (TC) proteins and genes that encode these proteins. More specifically, the subject invention relates to TC genes and proteins obtainable from Xenorhabdus strain Xwi. The subject invention also provides an exochitinase obtainable from the Xwi strain. This exochitinase can be used to control insects using methods known in the art.