摘要:
A high-performance NdFeB permanent magnet including a nitride phase and a production method thereof are provided. A main phase of the NdFeB permanent magnet has a structure of R2T14B; a grain boundary phase is distributed around the main phase and contains N, F, Zr, Ga and Cu; a composite phase containing R1, Tb and N exists between the main phase and the grain boundary phase and includes a phase having a structure of (R1, Tb)2T14(B, N). R represents at least two rare earth elements, and includes Pr and Nd; T represents Fe, Mn, Al and Co; R1 represents at least one rare earth element, and includes at least one of Dy and Tb; the main phase contains Pr, Nd, Fe, Mn, Al, Co and B; and the grain boundary phase further contains at least one of Nb and Ti. Through placing partially B by N, a magnetic performance is increased.
摘要:
A high-performance NdFeB permanent magnet produced with NdFeB scraps and a production method thereof are provided. The production method includes steps of: under a vacuum condition, sending a portion of raw materials, including pure iron, ferro-iron, the NdFeB scraps and rare earth fluorides, into a crucible, refining, and obtaining a first melting liquid; absorbing slags by a slag cleaning device, and moving the slag cleaning device out; sending a rest of raw materials into the crucible, refining the first melting liquid and the rest of raw materials in the crucible, and obtaining a second melting liquid; pouring the second melting liquid after refining onto a surface of a water-cooled rotation roller through a tundish, and forming alloy flakes; processing the alloy flakes with hydrogen decrepitation, milling the alloy flakes into powders by a jet mill, then magnetic field pressing, presintering and sintering.
摘要:
A NdFeB magnet containing cerium and a manufacturing method thereof are provided. The manufacturing method includes steps of: refining a part of raw materials pure iron, ferro-boron, and rare earth fluoride in a crucible, adding a rest of the raw materials into the crucible and refining, casting a refined solution to a surface of a water-cooled rotation roller through a tundish and forming alloy flakes, processing the alloy flakes containing at least two different compositions with hydrogen decrepitation, milling powders, magnetic field pressing, vacuum presintering, machining and sintering, and obtaining the NdFeB magnet containing cerium. The NdFeB magnet containing cerium has a density of 7.5-7.7 g/cm3 and an average particle size of 3-7 μm; comprises a main phase and a grain boundary phase distributed around the main phase. A composite phase containing Tb is provided between the main phase and the grain boundary phase.
摘要:
A method for sintering NdFeB rare earth permanent magnet includes steps of: providing a continuous vacuum sintering furnace to sinter; loading a sintering box with compacted magnet blocks onto a loading frame; while driving by a transmission apparatus, sending the loading frame orderly through a preparation chamber, a pre-heating and degreasing chamber, a first degassing chamber, a second degassing chamber, a pre-sintering chamber, a sintering chamber, an aging chamber and a cooling chamber of the continuous vacuum sintering furnace, respectively for pre-heating to remove organic impurities, and further for heating to dehydrogenate and degas, pre-sintering, sintering, aging and cooling. A continuous vacuum sintering apparatus is also provided.
摘要:
A method for manufacturing a NdFeB rare earth permanent magnet containing Ce whose raw material includes a Ce-LR-Fe—B-Ma alloy, a Ce-HR-Fe—B-Mb alloy, and metallic oxide micro-powder; wherein the LR at least includes Nd and Pr, and the LR does not include Ce; wherein the HR at least includes Dy or Tb, and the HR does not include Ce; wherein the Ma is selected from a group consisting of Al, Co, Nb, Ga, Zr and Cu; wherein the Mb is selected from a group consisting of Al, Co, Nb, Ga, Zr, Cu and Mo; includes steps of: melting the Ce-LR-Fe—B-Ma alloy, melting the Ce-HR-Fe—B-Mb alloy, providing hydrogen decrepitating, adsorbing with the metallic oxide micro-powder and powdering, providing magnetic field pressing, sintering and ageing, for forming a NdFeB rare earth permanent magnet.
摘要:
A high-performance NdFeB permanent magnet produced with NdFeB scraps and a production method thereof are provided. The production method includes steps of: under a vacuum condition, sending a portion of raw materials, including pure iron, ferro-iron, the NdFeB scraps and rare earth fluorides, into a crucible, refining, and obtaining a first melting liquid; absorbing slags by a slag cleaning device, and moving the slag cleaning device out; sending a rest of raw materials into the crucible, refining the first melting liquid and the rest of raw materials in the crucible, and obtaining a second melting liquid; pouring the second melting liquid after refining onto a surface of a water-cooled rotation roller through a tundish, and forming alloy flakes; processing the alloy flakes with hydrogen decrepitation, milling the alloy flakes into powders by a jet mill, then magnetic field pressing, presintering and sintering.
摘要:
A high-performance NdFeB permanent magnet including a nitride phase and a production method thereof are provided. A main phase of the NdFeB permanent magnet has a structure of R2T14B; a grain boundary phase is distributed around the main phase and contains N, F, Zr, Ga and Cu; a composite phase containing R1, Tb and N exists between the main phase and the grain boundary phase and includes a phase having a structure of (R1, Tb)2T14(B, N). R represents at least two rare earth elements, and includes Pr and Nd; T represents Fe, Mn, Al and Co; R1 represents at least one rare earth element, and includes at least one of Dy and Tb; the main phase contains Pr, Nd, Fe, Mn, Al, Co and B; and the grain boundary phase further contains at least one of Nb and Ti. Through placing partially B by N, a magnetic performance is increased.
摘要:
A method of powdering NdFeB rare earth permanent magnetic alloy includes: adding mixed powder after a hydrogen pulverization into a grinder; grinding the powder with a high-speed gas flow ejected by a nozzle; sending the ground powder into a centrifugal sorting wheel with the gas flow; collecting, by a cyclone collector, fine power selected by the sorting wheel; collecting, by a post cyclone collector, the fine powder discharged out with the gas flow from a gas discharging pipe of the cyclone collector; introducing, by a depositing device, the fine powder collected by the cyclone collector and by the post cyclone collector into a depositing tank; compressing, by a compressor, and cooling, by a cooler, the gas discharged by the post cyclone collector; and then sending the gas into a gas inlet of the nozzle for recycling. A device thereof is also provided.
摘要:
A method for manufacturing a high-performance NdFeB rare earth permanent magnetic device which is made of an R—Fe—Co—B-M strip casting alloy, a micro-crystal HR—Fe alloy fiber, and TmGn compound micro-powder, includes steps of: manufacturing the R—Fe—Co—B-M strip casting alloy, manufacturing the micro-crystal HR—Fe alloy fiber, providing hydrogen decrepitating, pre-mixing, powdering with jet milling, post-mixing, providing magnetic field pressing, sintering and ageing, wherein after a sintered NdFeB permanent magnet is manufactured, machining and surface-treating the sintered NdFeB permanent magnet for forming a rare earth permanent device.
摘要:
A method for manufacturing a high-performance NdFeB rare earth permanent magnetic device which is made of an R—Fe—Co—B-M strip casting alloy, a micro-crystal HR—Fe alloy fiber, and TmGn compound micro-powder, includes steps of: manufacturing the R—Fe—Co—B-M strip casting alloy, manufacturing the micro-crystal HR—Fe alloy fiber, providing hydrogen decrepitating, pre-mixing, powdering with jet milling, post-mixing, providing magnetic field pressing, sintering and ageing, wherein after a sintered NdFeB permanent magnet is manufactured, machining and surface-treating the sintered NdFeB permanent magnet for forming a rare earth permanent device.