Abstract:
A depilatory cream remover, which may include a head, a shaft and a handgrip. The head may be substantially perpendicular relative to the shaft. The head may include a length long enough to accumulate the depilatory cream while the depilatory cream remover is in use. The head may further include rounded corners to prevent irritation.
Abstract:
A method and apparatus is provided for determining concentration of components in a liquid hydrocarbon mixture including hydrocarbons and water flowing through an alkylation process. A fluid flow path conveys the liquid continuously from the alkylation process through a first instrument configured for measuring a property of the liquid mixture, and having responsivities to concentration of the components, which are independent of the concentration of the water. A temperature detector generates temperature data for the liquid, and a second instrument measures another property of the liquid mixture. The instruments have mutually distinct responsivities to concentrations of the components. A processor captures data from the temperature detector and instruments, using the data with a model of responsivities of various concentrations of the components at various temperatures, to determine a temperature compensated concentration of the components while the liquid mixture flows continuously through the fluid flow path.
Abstract:
A method and apparatus is provided for determining concentration of components in a liquid hydrocarbon mixture including hydrocarbons and water flowing through an alkylation process. A fluid flow path conveys the liquid continuously from the alkylation process through a first instrument configured for measuring a property of the liquid mixture, and having responsivities to concentration of the components, which are independent of the concentration of the water. A temperature detector generates temperature data for the liquid, and a second instrument measures another property of the liquid mixture. The instruments have mutually distinct responsivities to concentrations of the components. A processor captures data from the temperature detector and instruments, using the data with a model of responsivities of various concentrations of the components at various temperatures, to determine a temperature compensated concentration of the components while the liquid mixture flows continuously through the fluid flow path.
Abstract:
A spectroscopic sample analysis apparatus includes an actively controlled, direct contact heat exchanger in serial fluid communication with a spectroscopic analyzer, and a controller communicably coupled to the heat exchanger. The heat exchanger is disposed downstream of a fluid handler in the form of a stream selection unit (SSU), a solvent/standard recirculation unit (SRU), and/or an auto-sampling unit (ASU). The SSU selectively couples individual stream inputs to an output port. The SRU includes a solvent/standard reservoir, and selectively couples output ports to the heat exchanger, and returns the solvent/standard sample to the reservoirs. The ASU includes a sample reservoir having a sample transfer pathway with a plurality of orifices disposed at spaced locations along a length thereof. The controller selectively actuates the fluid handler, enabling sample to flow therethrough to the heat exchanger, and actuates the heat exchanger to maintain the sample at a predetermined temperature.
Abstract:
A drum hatch engaging mechanism is for inclusion in a laundry appliance having a cabinet and a drum rotatable within the cabinet. The mechanism includes a drum hatch engaging member connected with the cabinet with the connection providing for movement of the member between non-engagement and engagement positions. An actuator is provided to selectively move the drum hatch engaging member between the positions. A catch member is connected with a sliding hatch of the drum. The connection between the catch member and the sliding hatch provides for movement of the catch member between a position adjacent the skin of the drum and an outwardly displaced position. The drum hatch engaging member includes a ramped abutment to engage and lift the catch member to the outer position through movement of the catch member toward the abutment during an opening rotation of the drum. The hatch engaging member includes a closing abutment facing the ramped abutment. The closing abutment butts against the catch member during a closing rotation of the drum. There is a catch member support surface on the drum which tracks the circumference of the drum skin at a level to cooperate with the drum hatch engaging member. The support surface and the drum hatch engaging member cooperate to entrap the catch member in the outward position during opening and closing rotations of the drum. With a single actuator the mechanism can reliably open and close the drum without stopping the drum to engage and/or disengage from the drum hatch.
Abstract:
A stroller attachable mobile support that includes a forward U-shaped mobile support, a rear U-shaped mobile support, and two stroller frame attachment mechanisms. Each of the forward and rear U-shaped mobile supports includes a horizontal mobile attachment portion having a number of mobile element attachment rings. The forward U-shaped mobile support includes one of the two stroller frame attachment mechanisms formed at the end of each of two parallel portions thereof. The rear U-shaped mobile support portion extends away from the two parallel portions of the forward U-shaped mobile support. Each of the stroller frame attachment mechanisms is a mirror image of the other and includes a stroller frame structure member receiving channel and a threaded mobile support securing screw. The forward U-shaped mobile support includes a battery compartment, a two-position on/off switch, and a vibration mechanism. The two-position on/off switch is wired in controlling connection with the vibration mechanism. The vibration mechanism is installed within the horizontal mobile attachment portion of the forward U-shaped mobile support. The vibration mechanism includes an electric motor and an off center vibration mass, the vibration mass being secured to the output shaft of the electric motor.
Abstract:
A method and apparatus is provided for off-line concentration determination of components liquid hydrocarbon mixtures such as crude or heavy oil. A sampling unit continuously delivers a sample volume to a fluid flow path while a temperature control module maintains the sample at a predetermined setpoint temperature. A homogenization module helps prevent sample stratification while a flow control module maintain a constant sample flow rate. A spectrometer is communicably coupled to an optical transmission cell to transmit and receive radiation. The transmission cell includes collection optics to capture and aggregate non-collimated radiation emerging from the cell, for transmission to the spectrometer. The spectrometer measures sample spectra at a predetermined rate of flow of the sample volume through the transmission cell. A processor is configured to capture and use the spectra in combination with a model of spectra for the hydrocarbon mixture.
Abstract:
A spectroscopic sample analysis apparatus includes an actively controlled heat exchanger in serial fluid communication with a spectroscopic analyzer, and a controller communicably coupled to the heat exchanger. The heat exchanger is disposed downstream of a fluid handler in the form of a stream selection unit (SSU), a solvent/standard recirculation unit (SRU), and/or an auto-sampling unit (ASU). The SSU selectively couples individual stream inputs to an output port. The SRU includes a solvent/standard reservoir, and selectively couples output ports to the heat exchanger, and returns the solvent/standard sample to the reservoirs. The ASU includes a sample reservoir having a sample transfer pathway with a plurality of orifices disposed at spaced locations along a length thereof. The controller selectively actuates the fluid handler, enabling sample to flow therethrough to the heat exchanger, and actuates the heat exchanger to maintain the sample at a predetermined temperature.
Abstract:
A method and apparatus is provided for off-line concentration determination of components liquid hydrocarbon mixtures such as crude or heavy oil. A sampling unit continuously delivers a sample volume to a fluid flow path while a temperature control module maintains the sample at a predetermined setpoint temperature. A homogenization module helps prevent sample stratification while a flow control module maintain a constant sample flow rate. A spectrometer is communicably coupled to an optical transmission cell to transmit and receive radiation. The transmission cell includes collection optics to capture and aggregate non-collimated radiation emerging from the cell, for transmission to the spectrometer. The spectrometer measures sample spectra at a predetermined rate of flow of the sample volume through the transmission cell. A processor is configured to capture and use the spectra in combination with a model of spectra for the hydrocarbon mixture.
Abstract:
A method and apparatus is provided for determining concentration of components in a liquid hydrocarbon mixture including hydrocarbons and water flowing through an alkylation process. A fluid flow path conveys the liquid continuously from the alkylation process through a first instrument configured for measuring a property of the liquid mixture, and having responsivities to concentration of the components, which are independent of the concentration of the water. A temperature detector generates temperature data for the liquid, and a second instrument measures another property of the liquid mixture. The instruments have mutually distinct responsivities to concentrations of the components. A processor captures data from the temperature detector and instruments, using the data with a model of responsivities of various concentrations of the components at various temperatures, to determine a temperature compensated concentration of the components while the liquid mixture flows continuously through the fluid flow path.