摘要:
In some embodiments, the present invention is directed to methods for synthesizing higher diamondoids, wherein said methods involve augmenting existing diamondoid molecules through the bonding of carbon atoms to such existing diamondoid species with intramolecular cross-linking so as to form larger diamondoids containing face-fused diamond-crystal (adamantane) cages with carbon frameworks superimposable on the cubic-diamond crystal lattice.
摘要:
Higher diamondoid derivatives capable of taking part in polymerization reactions are disclosed as well as intermediates to these derivatives, polymers formed from these derivatives and methods for preparing the polymers.
摘要:
This invention is directed to functionalized higher diamondoids having at least one functional group. Preferably these derivatives have the following Formula I: wherein D is a higher diamondoid nucleus and wherein R1, R2, R3, R4, R5 and R6 are independently selected from a group consisting of hydrogen and functional groups, provided that there is at least one functional group on the derivative. The functionalized higher diamondoid compounds may also be of the formula D—L—(D)n wherein D is a higher diamondoid nucleus and L is a linking group and n is 1 or more. The functionalized higher diamondoid compounds additionally may be of the formula R38—D—D—R39 wherein D is a higher diamondoid nucleus and R38 and R39 are substituents.
摘要:
In some embodiments, the present invention is directed to methods for synthesizing higher diamondoids, wherein said methods involve augmenting existing diamondoid molecules through the bonding of carbon atoms to such existing diamondoid species with intramolecular cross-linking so as to form larger diamondoids containing face-fused diamond-crystal (adamantane) cages with carbon frameworks superimposable on the cubic-diamond crystal lattice.
摘要:
This invention is related to heteroatom containing diamondoids (i.e., “heterodiamondoids”) which are compounds having a diamondoid nucleus in which one or more of the diamondoid nucleus carbons has been substitutionally replaced with a noncarbon atom. These heteroatom substituents impart desirable properties to the diamondoid. In addition, the heterodiamondoids are functionalized affording compounds carrying one or more functional groups covalently pendant therefrom. This invention is further related to polymerizable functionalized heterodiamondoids. In a preferred aspect of this invention the diamondoid nuclei are triamantane and higher diamondoid nuclei. In another preferred aspect, the heteroatoms are selected to give rise to diamondoid materials which can serve as n- and p-type materials in electronic devices can serve as optically active materials.
摘要:
The invention relates to a method for forming high sp3 content amorphous carbon coatings deposited by plasma enhanced chemical vapor deposition on internal surfaces and employing the “hollow-cathode” technique. This method allows adjustment of tribological properties, such as hardness, Young's modulus, wear resistance and coefficient of friction as well as optical properties, such as refractive index. In addition the resulting coatings are uniform and have high corrosion resistance. By controlling pressure, type of diamondoid precursor and bias voltage, the new method prevents the diamondoid precursor from fully breaking upon impact with the substrate. The diamondoid retains sp3 bonds which yields a high sp3 content film at higher pressure. This enables a faster deposition rate than would be possible without the use of a diamondoid precursor.
摘要:
Novel positive-working photoresist compositions are disclosed. The monomers of the base resin of the resist contain diamondoid-containing pendant groups higher than adamantane in the polymantane series; for example, diamantane, triamantane, tetramantane, pentamantane, hexamantane, etc. The diamondoid-containing pendant group may have hydrophilic-enhancing substituents such as a hydroxyl group, and may contain a lactone group. Advantages of the present compositions include enhanced resolution, sensitivity, and adhesion to the substrate.
摘要:
This invention relates to diamondoid derivatives which exhibit therapeutic activity. Specifically, the diamondoid derivatives herein exhibit therapeutic effects in the treatment of viral disorders. Also provided are methods of treatment, prevention and inhibition of viral disorders in a subject in need.
摘要:
Novel uses of diamondoid-containing materials in the field of microelectronics are disclosed. Embodiments include, but are not limited to, thermally conductive films in integrated circuit packaging, low-k dielectric layers in integrated circuit multilevel interconnects, thermally conductive adhesive films, thermally conductive films in thermoelectric cooling devices, passivation films for integrated circuit devices (ICs), and field emission cathodes. The diamondoids employed in the present invention may be selected from lower diamondoids, as well as the newly provided higher diamondoids, including substituted and unsubstituted diamondoids. The higher diamondoids include tetramantane, peritamantane, hexamantane, heptamantane, octamantane, nonamantane, decamantane, and undecamantane. The diamondoid-containing material may be fabricated as a diamondoid-containing polymer, a diamondoid-containing sintered ceramic, a diamondoid ceramic composite, a CVD diamondoid film, a self-assembled diamondoid film, and a diamondoid-fullerene composite.
摘要:
Novel uses of diamondoid-containing materials in the field of microelectronics are disclosed. Embodiments include, but are not limited to, passivation films for integrated circuit devices (ICs). The diamondoids employed in the present invention may be selected from lower diamondoids, as well as the newly provided higher diamondoids, including substituted and unsubstituted diamondoids. The higher diamondoids include tetramantane, pentamantane, hexamantane, heptamantane, octamantane, nonamantane, decamantane, and undecamantane. The diamondoid-containing material may be fabricated as a diamondoid-containing polymer, a diamondoid-containing sintered ceramic, a diamondoid ceramic composite, a CVD diamondoid film, a self-assembled diamondoid film, and a diamondoid-fullerene composite.