Abstract:
Antireflective films are described having a surface layer comprising a the reaction product of a polymerizable low refractive index composition comprising at least one free-radically polymerizable fluoropolymer and surface modified inorganic nanoparticles. A high refractive index layer is coupled to the low refractive index layer. In one embodiment, the high refractive index layer comprises surface modified inorganic nanoparticles dispersed in a crosslinked organic material. The antireflective film is preferably durable, exhibiting a haze of less than 1.0% after 25 wipes with steel wool using a 3.2 cm mandrel and a mass of 1000 grams.
Abstract:
Antireflective films are described having a surface layer comprising a the reaction product of a polymerizable low refractive index composition comprising at least one fluorinated free-radically polymerizable material and surface modified inorganic nanoparticles. A high refractive index layer is coupled to the low refractive index layer. In one embodiment, the high refractive index layer comprises surface modified inorganic nanoparticles dispersed in a crosslinked organic material. The antireflective film is preferably durable, exhibiting a haze of less than 1.0% after 25 wipes with steel wool using a 3.2 cm mandrel and a mass of 1000 grams.
Abstract:
Antireflective films are described having a surface layer comprising a the reaction product of a polymerizable low refractive index composition comprising at least one fluorinated free-radically polymerizable material and surface modified inorganic nanoparticles. A high refractive index layer is coupled to the low refractive index layer. In one embodiment, the high refractive index layer comprises surface modified inorganic nanoparticles dispersed in a crosslinked organic material. The antireflective film is preferably durable, exhibiting a haze of less than 1.0% after 25 wipes with steel wool using a 3.2 cm mandrel and a mass of 1000 grams.
Abstract:
Methods of protecting graphic substrates are disclosed. One method includes coating a hardcoat composition onto a substrate to form a hardcoat layer, curing the hardcoat layer to form a cured hardcoat layer, disposing a thermoplastic layer onto the cured hardcoat layer to form a transparent hardcoat composite film, and laminating the transparent hardcoat composite film onto a graphic substrate with heat and pressure. The thermoplastic layer softens and adheres to the graphic substrate to form a protected graphic substrate. Stain and scratch resistant cured hardcoat composite films are also disclosed.
Abstract:
Electrically conductive films comprising a flexible support, an extensible metal or metal alloy layer, and a crosslinked polymeric protective layer have at least one permanently deformed curved region. The films can be light transmissive and can have regions of compound curvature, and the metal or metal alloy layer can be substantially continuous. The films have reduced susceptibility to fracture or corrosion compared to commercially available electromagnetic interference (EMI) shielding films.
Abstract:
Methods of applying a polymer coating to a substrate are disclosed. By disrupting a bank of polymer precursor, a smooth coating of fast setting polymer can be applied to a substrate. Apparatus for applying a polymer coating is also disclosed. In one embodiment, an oscillating dispenser is used to apply polymer precursor onto a dispersive surface. The polymer precursor flows down the surface and is transferred to a moving web. Flowing solvent downwardly through the dispenser can provide efficient cleaning without the need for disassembly or production delays.
Abstract:
A method of making a polymer coating on a microstructured substrate. The method may be performed by vaporizing a liquid monomer or other pre-polymer composition and condensing the vaporized material onto a microstructured substrate, followed by curing. The resulting article may possess a coating that preserves the underlying microstructural feature profile. Such a profile-preserving polymer coating can be used to change or enhance the surface properties of the microstructured substrate while maintaining the function of the structure.
Abstract:
Methods of applying a polymer coating to a substrate are disclosed. By disrupting a bank of polymer precursor, a smooth coating of fast setting polymer can be applied to a substrate. Apparatus for applying a polymer coating is also disclosed. In one embodiment, an oscillating dispenser is used to apply polymer precursor onto to a dispersive surface. The polymer precursor flows down the surface and is transferred to a moving web. Flowing solvent downwardly through the dispenser can provide efficient cleaning without the need for disassembly or production delays.
Abstract:
The present invention is a display apparatus that provides protection against damage for a metallic layer. The display apparatus includes a light modulating layer, a polarizer, and a light directing film. The light directing film includes a prismatic structure having two sides, where one side includes saw tooth formations having tilted surfaces and a metal layer on the side of the prismatic substrate having the saw-tooth formations. A tilt angle of the tilted surfaces offsets an optimal viewing angle for the display from a glare angle for the display. In a first embodiment of the invention, the light directing film of the display apparatus further includes an inorganic protective layer formed on the metal layer, wherein the inorganic protective layer inhibits molecular transfer to the metal layer and balances the color of reflected and transmitted light. The light directing film further includes a pressure sensitive adhesive layer between a polarizer and the inorganic protective layer. Alternatively, the light directing film of the display apparatus of the present invention includes a polymer protective layer formed over the metal layer to protect the metal layer from damage. The light directing film also includes a diffuse adhesive layer formed over the polymer layer, attached to the polarizer. The polymer protective layer protects the metal layer from the adhesive layer. The display apparatus may include both the inorganic protective layer and the polymer protective layer, in one embodiment.
Abstract:
Apparatus suitable for atomizing and vaporizing at least a first liquid by colliding at least one gas with the first liquid. The apparatus includes a gas inlet through which the gas enters the apparatus and a first liquid inlet through which the first liquid enters the apparatus. A discharge end of the apparatus includes at least one first liquid discharge outlet through which at least one stream of the first liquid is discharged from the apparatus. The discharge end also includes at least one gas discharge outlet through which at least one stream of gas is discharged from the apparatus to collide with and thereby atomize the discharged stream of the first liquid. A first liquid passageway interconnects the first liquid inlet with the first liquid discharge outlet. A gas passageway interconnects the gas inlet with the at least one gas discharge outlet. In one embodiment, the gas passageway comprises at least one gas chamber in thermal contact with an initial portion of the first liquid passageway such that a heated quantity of the gas in the chamber preheats the first liquid in the initial portion of the first liquid passageway. In alternative embodiments, the gas passageway includes a pressure dampening chamber allowing gas to be continuously discharged without pulsating.